Content area

Abstract

One-dimensional GaAs/InGaAs core–shell nanowires (NWs) with reverse type-I band alignment are promising candidates for next-generation optoelectronic devices. However, the influence of composition gradients and atomic interdiffusion at the core–shell interface on their photoluminescence (PL) behavior remains to be clarified. In this work, GaAs/InxGa1−xAs NW arrays with different indium (In) compositions were prepared using molecular beam epitaxy (MBE), and their band alignment and optical responses were systematically investigated through power and temperature-dependent PL spectra. The experiments reveal that variations in the In concentration gradient modify the characteristics of potential wells within the composition graded layer (CGL), as reflected by distinct PL emission features and thermal activation energies. At elevated temperatures, carrier escape from these wells is closely related to the observed PL saturation and emission quenching. These results provide experimental insight into the relationship between composition gradients, carrier dynamics, and emission properties in GaAs/InGaAs core–shell NWs, making them promising candidates for high-performance nanoscale optoelectronic device design.

Details

1009240
Title
Inference of Indium Competition on the Optical Characteristics of GaAs/InxGa1−xAs Core–Shell Nanowires with Reverse Type-I Band Alignment
Author
Wang Puning 1   VIAFID ORCID Logo  ; Liu, Huan 2 ; Kang Yubin 3 ; Tang Jilong 3 ; Hao Qun 3 ; Wei Zhipeng 3 

 State Key Laboratory of High-Power Semiconductor Laser, School of Physics, Changchun University of Science and Technology, Changchun 130022, China; [email protected] (P.W.); [email protected] (Y.K.); [email protected] (J.T.); [email protected] (Q.H.), Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; [email protected] 
 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; [email protected] 
 State Key Laboratory of High-Power Semiconductor Laser, School of Physics, Changchun University of Science and Technology, Changchun 130022, China; [email protected] (P.W.); [email protected] (Y.K.); [email protected] (J.T.); [email protected] (Q.H.) 
Publication title
Materials; Basel
Volume
18
Issue
17
First page
4030
Number of pages
13
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-28
Milestone dates
2025-08-01 (Received); 2025-08-26 (Accepted)
Publication history
 
 
   First posting date
28 Aug 2025
ProQuest document ID
3249703462
Document URL
https://www.proquest.com/scholarly-journals/inference-indium-competition-on-optical/docview/3249703462/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-12
Database
ProQuest One Academic