Content area

Abstract

Satellite-based target positioning is vital for applications like disaster relief and precision mapping. Practically, satellite errors, e.g., thermal deformation and attitude errors, lead to a mix of fixed and random errors in the measured line-of-sight angles, resulting in a decline in target-positioning accuracy. Motivated by this concern, this study introduces a systematic error self-correction target-positioning method under continuous observations using a single video satellite. After analyzing error sources and establishing an error-inclusive positioning model, we formulate a dimension-extended equation estimating both target position and fixed biases. Based on the equation, a projection transformation method is proposed to obtain the linearized estimation of unknown parameters first, and an iterative optimization method is then utilized to further refine the estimate. Compared with state-of-the-art algorithms, the proposed method can improve positioning accuracy by 98.70% in simulation scenarios with large fixed errors. Thus, the simulation and actual data calculation results demonstrate that, compared with state-of-the-art algorithms, the proposed algorithm effectively improves the target-positioning accuracy under non-ideal error conditions.

Details

1009240
Title
A System Error Self-Correction Target-Positioning Method in Video Satellite Observation
Publication title
Volume
17
Issue
17
First page
2935
Number of pages
25
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-23
Milestone dates
2025-07-26 (Received); 2025-08-22 (Accepted)
Publication history
 
 
   First posting date
23 Aug 2025
ProQuest document ID
3249714388
Document URL
https://www.proquest.com/scholarly-journals/system-error-self-correction-target-positioning/docview/3249714388/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-12
Database
ProQuest One Academic