Content area
Active disturbance rejection control (ADRC) is a robust methodology that does not require precise knowledge of the plant. Developed in China by Professor Jingqing Han, it is based on PID control, state observers, and nonlinear functions. Brushed DC motors are known for their low cost and the noise they introduce into control circuits. This paper demonstrates that ADRC can effectively control low-power brushed DC motors using a general nonlinear model and Simulink for tuning. The model is simulated using parameters provided by the manufacturer. An ADRC developed and programmed by the authors in MATLAB is then integrated into the simulation. The controller is tuned, and its performance is verified. Subsequently, the ADRC is implemented on a Raspberry Pi 3 using MATLAB’s support packages and methods developed by the authors. The controller is tested on a Faulhaber 2342L012CR DC motor (12 V/17 W). The results show that it is possible to control the position of the low-power brushed DC motor through simulation-based tuning. The interaction between Simulink and Raspberry Pi 3 enables an optimal control characterized by a fast response, a minimal steady-state error, and no perceptible overshoot. This implementation demonstrates that ADRC is a practical and efficient control method for brushed DC motors.
