Content area

Abstract

Many biological and medical questions can be modeled using time-to-event data in finite-state Markov chains, with the phase-type distribution describing intervals between events. We solve the inverse problem: given a phase-type distribution, can we identify the transition rate parameters of the underlying Markov chain? For a specific class of solvable Markov models, we show this problem has a unique solution up to finite symmetry transformations, and we outline a recursive method for computing symbolic solutions for these models across any number of states. Using the Thomas decomposition technique from computer algebra, we further provide symbolic solutions for any model. Interestingly, different models with the same state count but distinct transition graphs can yield identical phase-type distributions. To distinguish among these, we propose additional properties beyond just the time to the next event. We demonstrate the method’s applicability by inferring transcriptional regulation models from single-cell transcription imaging data.

Details

Title
Identifying Markov Chain Models from Time-to-Event Data: An Algebraic Approach
Author
Radulescu, Ovidiu 1   VIAFID ORCID Logo  ; Grigoriev, Dima 2 ; Seiss, Matthias 3 ; Douaihy, Maria 4 ; Lagha, Mounia 5 ; Bertrand, Edouard 6 

 University of Montpellier and CNRS, LPHI, Montpellier, France (GRID:grid.121334.6) (ISNI:0000 0001 2097 0141) 
 Université de Lille, Mathématiques, CNRS, Villeneuve d’Ascq, France (GRID:grid.464109.e) (ISNI:0000 0004 0638 7509) 
 University of Kassel, Institut für Mathematik, Kassel, Germany (GRID:grid.5155.4) (ISNI:0000 0001 1089 1036) 
 University of Montpellier and CNRS, LPHI, Montpellier, France (GRID:grid.121334.6) (ISNI:0000 0001 2097 0141); University of Montpellier and CNRS, IGMM, Montpellier, France (GRID:grid.121334.6) (ISNI:0000 0001 2097 0141) 
 University of Montpellier and CNRS, IGMM, Montpellier, France (GRID:grid.121334.6) (ISNI:0000 0001 2097 0141) 
 University of Montpellier, IGH, CNRS, Montpellier, France (GRID:grid.121334.6) (ISNI:0000 0001 2097 0141) 
Publication title
Volume
87
Issue
1
Pages
11
Publication year
2025
Publication date
Jan 2025
Publisher
Springer Nature B.V.
Place of publication
New York
Country of publication
Netherlands
Publication subject
ISSN
00928240
e-ISSN
15229602
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-12-03
Milestone dates
2024-11-07 (Registration); 2024-07-16 (Received); 2024-11-06 (Accepted)
Publication history
 
 
   First posting date
03 Dec 2024
ProQuest document ID
3254319771
Document URL
https://www.proquest.com/scholarly-journals/identifying-markov-chain-models-time-event-data/docview/3254319771/se-2?accountid=208611
Copyright
© The Author(s), under exclusive licence to the Society for Mathematical Biology 2024.
Last updated
2025-09-26
Database
ProQuest One Academic