Content area
Hemp (Cannabis sativa L.) is a high-yielding crop cultivated for fiber and seed production, generating substantial lignocellulosic residues such as hurds. These byproducts can be valorized through pyro-gasification, a thermochemical process that offers a sustainable alternative to combustion and produces biochar—a promising soil amendment due to its ability to enhance soil quality and mitigate drought stress. This research explores the viability of utilizing industrial hemp hurds as a direct feedstock for biochar production within the context of agricultural exploitation. The study specifically focuses on assessing the feasibility of converting raw, unprocessed hemp hurds into biochar through pyrolysis. A comprehensive characterization of the resulting biochar is conducted to evaluate its properties and potential applications in agriculture, establishing a foundational understanding for future agronomic use. Specific analysis included proximate and ultimate analysis, thermogravimetric analysis (TGA), SEM-EDS, and phytotoxicity testing. The biochar exhibited an alkaline pH (≥9), a low H/C ratio (0.37), and suitable macro- and micronutrient levels. Microstructural analysis revealed a porous architecture favorable for nutrient retention and water absorption. Germination tests with corn (Zea mays L.) showed a germination index above 90% for substrates containing 0.5–1% biochar. These findings establish a foundation for future research aimed at thoroughly exploring the agricultural potential of this material.
Details
Microstructural analysis;
Hemp;
Agricultural production;
Nutrient retention;
Carbon dioxide removal;
Thermogravimetric analysis;
Soil amendment;
Germination;
Biomass;
Gasification;
Dimensional analysis;
Drought;
Energy consumption;
Composite materials;
Agriculture;
Pyrolysis;
Phytotoxicity;
Raw materials;
Lignocellulose;
Soil quality;
Charcoal;
Sustainability;
Seeds;
Water absorption;
Alternative energy sources
