Content area

Abstract

The paper presents a novel probability-informed approach to improving the accuracy of small object semantic segmentation in high-resolution imagery datasets with imbalanced classes and a limited volume of samples. Small objects imply having a small pixel footprint on the input image, for example, ships in the ocean. Informing in this context means using mathematical models to represent data in the layers of deep neural networks. Thus, the ensemble Quadtree-informed Graph Self-Attention Networks (QiGSANs) are proposed. New architectural blocks, informed by types of Markov random fields such as quadtrees, have been introduced to capture the interconnections between features in images at different spatial resolutions during the graph convolution of superpixel subregions. It has been analytically proven that quadtree-informed graph convolutional neural networks, a part of QiGSAN, tend to achieve faster loss reduction compared to convolutional architectures. This justifies the effectiveness of probability-informed modifications based on quadtrees. To empirically demonstrate the processing of real small data with imbalanced object classes using QiGSAN, two open datasets of synthetic aperture radar (SAR) imagery (up to 0.5 m per pixel) are used: the High Resolution SAR Images Dataset (HRSID) and the SAR Ship Detection Dataset (SSDD). The results of QiGSAN are compared to those of the transformers SegFormer and LWGANet, which constitute a new state-of-the-art model for UAV (Unmanned Aerial Vehicles) and SAR image processing. They are also compared to convolutional neural networks and several ensemble implementations using other graph neural networks. QiGSAN significantly increases the F1-score values by up to 63.93%, 48.57%, and 9.84% compared to transformers, convolutional neural networks, and other ensemble architectures, respectively. QiGSAN outperformed the base segmentors with the mIOU (mean intersection-over-union) metric too: the highest increase was 35.79%. Therefore, our approach to knowledge extraction using mathematical models allows us to significantly improve modern computer vision techniques for imbalanced data.

Details

1009240
Business indexing term
Title
QiGSAN: A Novel Probability-Informed Approach for Small Object Segmentation in the Case of Limited Image Datasets
Publication title
Volume
9
Issue
9
First page
239
Number of pages
26
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
25042289
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-09-18
Milestone dates
2025-08-08 (Received); 2025-09-12 (Accepted)
Publication history
 
 
   First posting date
18 Sep 2025
ProQuest document ID
3254466591
Document URL
https://www.proquest.com/scholarly-journals/qigsan-novel-probability-informed-approach-small/docview/3254466591/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-26
Database
ProQuest One Academic