Content area
The paper presents a novel probability-informed approach to improving the accuracy of small object semantic segmentation in high-resolution imagery datasets with imbalanced classes and a limited volume of samples. Small objects imply having a small pixel footprint on the input image, for example, ships in the ocean. Informing in this context means using mathematical models to represent data in the layers of deep neural networks. Thus, the ensemble Quadtree-informed Graph Self-Attention Networks (QiGSANs) are proposed. New architectural blocks, informed by types of Markov random fields such as quadtrees, have been introduced to capture the interconnections between features in images at different spatial resolutions during the graph convolution of superpixel subregions. It has been analytically proven that quadtree-informed graph convolutional neural networks, a part of QiGSAN, tend to achieve faster loss reduction compared to convolutional architectures. This justifies the effectiveness of probability-informed modifications based on quadtrees. To empirically demonstrate the processing of real small data with imbalanced object classes using QiGSAN, two open datasets of synthetic aperture radar (SAR) imagery (up to
Details
Datasets;
Accuracy;
Pixels;
Image resolution;
Fields (mathematics);
Image segmentation;
Unmanned aerial vehicles;
Graph neural networks;
Artificial neural networks;
Synthetic aperture radar;
Neural networks;
High resolution;
Data processing;
Architecture;
Computer vision;
Semantic segmentation;
Radar imaging;
Image processing;
Loss reduction;
Efficiency;
Semantics
