Content area
To address the limitations of traditional cadmium telluride (CdTe) photovoltaic (PV) windows in comprehensively considering overall building energy consumption, indoor lighting comfort, and outdoor visibility, this study proposes a three-domain division CdTe PV window design, which divides the window into three areas, each undertaking different functions. This study utilized the Energy Plus 9.3.0 software and Radiance 1.6.0 software for numerical simulation to explore the impact of different design parameters (such as coverage rate and arrangement mode of PV) of the three-domain division PV windows on building energy consumption and the proportion of indoor effective natural lighting (UDI300lx–2000lx) in single-story office buildings in Yan’an. Additionally, this study employed the entropy weight–TOPSIS method to conduct a comprehensive evaluation of 84 schemes. The results indicate that both the coverage rate and the arrangement mode of PV significantly influence building energy-saving and indoor lighting environment. The energy-saving rate initially increases and then decreases with higher PV coverage, while UDI300lx–2000lx generally exhibits an upward trend and slightly decreases later. The V3-V1 or H3-V1 arrangement mode demonstrates superior energy-saving performance, whereas the H3-V1 or V3-H1 arrangement mode provides better indoor lighting comfort. The evaluation weights for energy-saving rate and effective daylighting are 0.38 and 0.62, respectively. Based on the comprehensive evaluation, the optimal configuration is determined to be V1-90%-V2-10%-H3-90%, achieving an energy-saving rate of 11.1% and a UDI300lx–2000lx value of 56.95%.
Details
Cadmium telluride;
Green buildings;
Natural lighting;
Windows (computer programs);
Optimization;
Cadmium;
Entropy;
Lighting;
Heat;
Energy conservation;
Office buildings;
Daylighting;
Energy consumption;
Ventilation;
Photovoltaic cells;
Indoor environments;
Cadmium tellurides;
Photovoltaics;
Electricity;
Outdoors;
Light;
Design parameters;
Mathematical models;
Climate;
Software