Content area

Abstract

To address the limitations of traditional cadmium telluride (CdTe) photovoltaic (PV) windows in comprehensively considering overall building energy consumption, indoor lighting comfort, and outdoor visibility, this study proposes a three-domain division CdTe PV window design, which divides the window into three areas, each undertaking different functions. This study utilized the Energy Plus 9.3.0 software and Radiance 1.6.0 software for numerical simulation to explore the impact of different design parameters (such as coverage rate and arrangement mode of PV) of the three-domain division PV windows on building energy consumption and the proportion of indoor effective natural lighting (UDI300lx–2000lx) in single-story office buildings in Yan’an. Additionally, this study employed the entropy weight–TOPSIS method to conduct a comprehensive evaluation of 84 schemes. The results indicate that both the coverage rate and the arrangement mode of PV significantly influence building energy-saving and indoor lighting environment. The energy-saving rate initially increases and then decreases with higher PV coverage, while UDI300lx–2000lx generally exhibits an upward trend and slightly decreases later. The V3-V1 or H3-V1 arrangement mode demonstrates superior energy-saving performance, whereas the H3-V1 or V3-H1 arrangement mode provides better indoor lighting comfort. The evaluation weights for energy-saving rate and effective daylighting are 0.38 and 0.62, respectively. Based on the comprehensive evaluation, the optimal configuration is determined to be V1-90%-V2-10%-H3-90%, achieving an energy-saving rate of 11.1% and a UDI300lx–2000lx value of 56.95%.

Details

1009240
Business indexing term
Location
Title
Optimization of Energy Consumption and Light Environment for Three-Domain Division Cadmium Telluride Photovoltaic Windows Based on Entropy Weight–TOPSIS
Publication title
Buildings; Basel
Volume
15
Issue
18
First page
3296
Number of pages
22
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-09-12
Milestone dates
2025-07-24 (Received); 2025-09-09 (Accepted)
Publication history
 
 
   First posting date
12 Sep 2025
ProQuest document ID
3254477197
Document URL
https://www.proquest.com/scholarly-journals/optimization-energy-consumption-light-environment/docview/3254477197/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-26
Database
ProQuest One Academic