Content area

Abstract

Industrial Wireless Sensor Networks (IWSNs) play a critical role in Industry 4.0 environments, enabling real-time monitoring and control of industrial processes. However, existing lightweight authentication protocols for IWSNs remain vulnerable to sophisticated security attacks because of inadequate initial authentication phases. This study presents a security analysis of Gope et al.’s PUF-based authentication protocol for IWSNs and identifies critical vulnerabilities that enable man-in-the-middle (MITM) and denial-of-service (DoS) attacks. We demonstrate that Gope et al.’s protocol is susceptible to MITM attacks during both authentication and Secure Periodical Data Collection (SPDC), allowing adversaries to derive session keys and compromise communication confidentiality. Our analysis reveals that the sensor registration phase of the protocol lacks proper authentication mechanisms, enabling attackers to perform unauthorized PUF queries and subsequently mount successful attacks. To address these vulnerabilities, we propose an enhanced authentication scheme that introduces a sensor-initiated registration process. In our improved protocol, sensor nodes generate and control PUF challenges rather than passively responding to gateway requests. This modification prevents unauthorized PUF queries while preserving the lightweight characteristics essential for resource-constrained IWSN deployments. Security analysis demonstrates that our enhanced scheme effectively mitigates the identified MITM and DoS attacks without introducing significant computational or communication overhead. The proposed modifications maintain compatibility with the existing IWSN infrastructure while strengthening the overall security posture. Comparative analysis shows that our solution addresses the security weaknesses of the original protocol while preserving its practical advantages for industrial use. The enhanced protocol provides a practical and secure solution for real-time data access in IWSNs, making it suitable for deployment in mission-critical industrial environments where both security and efficiency are paramount.

Details

1009240
Title
MITM- and DoS-Resistant PUF Authentication for Industrial WSNs via Sensor-Initiated Registration
Author
Publication title
Computers; Basel
Volume
14
Issue
9
First page
347
Number of pages
33
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
2073431X
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-23
Milestone dates
2025-07-30 (Received); 2025-08-21 (Accepted)
Publication history
 
 
   First posting date
23 Aug 2025
ProQuest document ID
3254479592
Document URL
https://www.proquest.com/scholarly-journals/mitm-dos-resistant-puf-authentication-industrial/docview/3254479592/se-2?accountid=208611
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-02
Database
ProQuest One Academic