Content area

Abstract

Quantum computing, with its foundational principles of superposition and entanglement, has the potential to provide significant quantum advantages, addressing challenges that classical computing may struggle to overcome. As data generation continues to grow exponentially and technological advancements accelerate, classical machine learning algorithms increasingly face difficulties in solving complex real-world problems. The integration of classical machine learning with quantum information processing has led to the emergence of quantum machine learning, a promising interdisciplinary field. This work provides the reader with a bottom-up view of quantum circuits starting from quantum data representation, quantum gates, the fundamental quantum algorithms, and more complex quantum processes. Thoroughly studying the mathematics behind them is a powerful tool to guide scientists entering this domain and exploring their connection to quantum machine learning. Quantum algorithms such as Shor’s algorithm, Grover’s algorithm, and the Harrow–Hassidim–Lloyd (HHL) algorithm are discussed in detail. Furthermore, real-world implementations of quantum machine learning and quantum deep learning are presented in fields such as healthcare, bioinformatics and finance. These implementations aim to enhance time efficiency and reduce algorithmic complexity through the development of more effective quantum algorithms. Therefore, a comprehensive understanding of the fundamentals of these algorithms is crucial.

Details

1009240
Business indexing term
Title
Quantum Machine Learning and Deep Learning: Fundamentals, Algorithms, Techniques, and Real-World Applications
Volume
7
Issue
3
First page
75
Number of pages
66
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
25044990
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-01
Milestone dates
2025-04-23 (Received); 2025-07-29 (Accepted)
Publication history
 
 
   First posting date
01 Aug 2025
ProQuest document ID
3254581066
Document URL
https://www.proquest.com/scholarly-journals/quantum-machine-learning-deep-fundamentals/docview/3254581066/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-17
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic