Content area

Abstract

To address the issues of link mismatch and channel impairment in wireless optical communication across atmospheric-oceanic media, this paper proposes a two-hop relay transmission architecture based on the multiple-input multiple-output (MIMO)-enhanced multi-level hybrid multiplexing. The system implements decode-and-forward operations via maritime buoy/ship relays, achieving physical layer isolation between atmospheric and oceanic channels. The transmitter employs coherent orthogonal frequency division multiplexing technology with quadrature amplitude modulation to achieve frequency division multiplexing of baseband signals, combines with orthogonal polarization modulation to generate polarization-multiplexed signal beams, and finally realizes multi-dimensional signal transmission through MIMO spatial diversity. To cope with cross-medium environmental interference, a composite channel model is established, which includes atmospheric turbulence (Gamma–Gamma model), rain attenuation, and oceanic chlorophyll absorption and scattering effects. Simulation results show that the multi-level hybrid multiplexing method can significantly improve the data transmission rate of the system. Since the system adopts three channels of polarization-state data, the data transmission rate is increased by 200%; the two-hop relay method can effectively improve the communication performance of cross-medium optical communication and fundamentally solve the problem of light transmission in cross-medium planes; the use of MIMO technology has a compensating effect on the impacts of both atmospheric and marine environments, and as the number of light beams increases, the system performance can be further improved. This research provides technical implementation schemes and reference data for the design of high-capacity optical communication systems across air-sea media.

Details

1009240
Title
Design and Simulation of Cross-Medium Two-Hop Relaying Free-Space Optical Communication System Based on Multiple Diversity and Multiplexing Technologies
Author
Publication title
Photonics; Basel
Volume
12
Issue
9
First page
867
Number of pages
17
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-08-28
Milestone dates
2025-07-22 (Received); 2025-08-27 (Accepted)
Publication history
 
 
   First posting date
28 Aug 2025
ProQuest document ID
3254625051
Document URL
https://www.proquest.com/scholarly-journals/design-simulation-cross-medium-two-hop-relaying/docview/3254625051/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-26
Database
ProQuest One Academic