Content area

Abstract

This work presents the development of a web system using deep learning (DL) neural networks to solve the inverse kinematics problem of the Quetzal robotic arm, designed for academic and research purposes. Two architectures, LSTM and CNN, were designed, trained, and evaluated using data generated through the Denavit–Hartenberg (D-H) model, considering the robot’s workspace. The evaluation employed the mean squared error (MSE) as the loss metric and mean absolute error (MAE) and accuracy as performance metrics. The CNN model, featuring four convolutional layers and an input of 4 timesteps, achieved the best overall performance (95.9% accuracy, MSE of 0.003, and MAE of 0.040), significantly outperforming the LSTM model in training time. A hybrid web application was implemented, allowing offline training and real-time online inference under one second via an interactive interface developed with Streamlit 1.16. The solution integrates tools such as TensorFlow™ 2.15, Python 3.10, and Anaconda Distribution 2023.03-1, ensuring portability to fog or cloud computing environments. The proposed system stands out for its fast response times (1 s), low computational cost, and high scalability to collaborative robotics environments. It is a viable alternative for applications in educational or research settings, particularly in projects focused on industrial automation.

Details

1009240
Identifier / keyword
Title
Web System for Solving the Inverse Kinematics of 6DoF Robotic Arm Using Deep Learning Models: CNN and LSTM
Author
Torres-Hernández, Mayra A 1   VIAFID ORCID Logo  ; Ibarra-Pérez Teodoro 2   VIAFID ORCID Logo  ; García-Sánchez, Eduardo 3 ; Guerrero-Osuna, Héctor A 3   VIAFID ORCID Logo  ; Solís-Sánchez, Luis O 3   VIAFID ORCID Logo  ; Martínez-Blanco Ma. del Rosario 4   VIAFID ORCID Logo 

 Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas (UPIIZ), Zacatecas 98160, Mexico; [email protected] (M.A.T.-H.); [email protected] (T.I.-P.), Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico; [email protected] (E.G.-S.); [email protected] (H.A.G.-O.), Laboratorio de Inteligencia Artificial Avanzada (LIAA), Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico 
 Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas (UPIIZ), Zacatecas 98160, Mexico; [email protected] (M.A.T.-H.); [email protected] (T.I.-P.) 
 Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico; [email protected] (E.G.-S.); [email protected] (H.A.G.-O.) 
 Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico; [email protected] (E.G.-S.); [email protected] (H.A.G.-O.), Laboratorio de Inteligencia Artificial Avanzada (LIAA), Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico 
Publication title
Volume
13
Issue
9
First page
405
Number of pages
31
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
22277080
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-09-05
Milestone dates
2025-05-30 (Received); 2025-09-01 (Accepted)
Publication history
 
 
   First posting date
05 Sep 2025
ProQuest document ID
3254652434
Document URL
https://www.proquest.com/scholarly-journals/web-system-solving-inverse-kinematics-6dof/docview/3254652434/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-08
Database
ProQuest One Academic