Content area
This work presents the development of a web system using deep learning (DL) neural networks to solve the inverse kinematics problem of the Quetzal robotic arm, designed for academic and research purposes. Two architectures, LSTM and CNN, were designed, trained, and evaluated using data generated through the Denavit–Hartenberg (D-H) model, considering the robot’s workspace. The evaluation employed the mean squared error (MSE) as the loss metric and mean absolute error (MAE) and accuracy as performance metrics. The CNN model, featuring four convolutional layers and an input of 4 timesteps, achieved the best overall performance (95.9% accuracy, MSE of 0.003, and MAE of 0.040), significantly outperforming the LSTM model in training time. A hybrid web application was implemented, allowing offline training and real-time online inference under one second via an interactive interface developed with Streamlit 1.16. The solution integrates tools such as TensorFlow™ 2.15, Python 3.10, and Anaconda Distribution 2023.03-1, ensuring portability to fog or cloud computing environments. The proposed system stands out for its fast response times (1 s), low computational cost, and high scalability to collaborative robotics environments. It is a viable alternative for applications in educational or research settings, particularly in projects focused on industrial automation.
Details
Kinematics;
Deep learning;
Datasets;
Applications programs;
Artificial neural networks;
Laboratories;
Robots;
Data processing;
Data science;
Automation;
Machine learning;
Python;
Visualization;
Robot learning;
Robotics;
Accuracy;
Performance measurement;
Control algorithms;
Artificial intelligence;
Robot arms;
Cloud computing;
Neural networks;
Inverse kinematics;
Design;
Libraries;
Real time;
Interfaces
; Ibarra-Pérez Teodoro 2
; García-Sánchez, Eduardo 3 ; Guerrero-Osuna, Héctor A 3
; Solís-Sánchez, Luis O 3
; Martínez-Blanco Ma. del Rosario 4
1 Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas (UPIIZ), Zacatecas 98160, Mexico; [email protected] (M.A.T.-H.); [email protected] (T.I.-P.), Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico; [email protected] (E.G.-S.); [email protected] (H.A.G.-O.), Laboratorio de Inteligencia Artificial Avanzada (LIAA), Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
2 Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas (UPIIZ), Zacatecas 98160, Mexico; [email protected] (M.A.T.-H.); [email protected] (T.I.-P.)
3 Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico; [email protected] (E.G.-S.); [email protected] (H.A.G.-O.)
4 Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico; [email protected] (E.G.-S.); [email protected] (H.A.G.-O.), Laboratorio de Inteligencia Artificial Avanzada (LIAA), Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico