Content area
Modern logistics operations require real-time adaptive solutions for three-dimensional bin packing that maintain spatial symmetry and load balance. This paper introduces a time-series-based online 3D packing problem with dual unknown sequences, where containers and items arrive dynamically. The challenge lies in achieving symmetric distribution for stability and optimal space utilization. We propose the Second-Order Dual Pointer Adversarial Network (So-DPAN), a deep reinforcement learning architecture that leverages symmetry principles to decompose spatiotemporal optimization into sequence matching and spatial arrangement sub-problems. The dual pointer mechanism enables efficient item-container pairing, while the second-order structure captures temporal dependencies by maintaining symmetric packing patterns. Our approach considers geometric symmetry for spatial arrangement and temporal symmetry for sequence matching. The Actor-Critic framework uses symmetry-based reward functions to guide learning toward balanced configurations. Experiments demonstrate that So-DPAN outperforms DQN, DDPG, and traditional heuristics in solution quality and efficiency while maintaining superior symmetry metrics in center-of-gravity positioning and load distribution. The algorithm exploits inherent symmetries in packing structure, advancing theoretical understanding through symmetry-aware optimization while providing a deployable framework for Industry 4.0 smart logistics.
Details
1 School of Smart Logistics and Manufacturing, Wuhu Vocational Technical University, Wuhu 241003, China
2 Jiangsu Postal Big Data Technology and Application Engineering Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210003, China, National Postal Industry Technology R&D Center (Internet of Things Technology), Nanjing University of Posts and Telecommunications, Nanjing 210003, China