Content area

Abstract

With the rapid development of the aviation industry, the contradiction between the shortage of airport parking space resources and the continuous growth of air transportation demand has become increasingly prominent. Traditional parking space allocation and scheduling methods have been unable to cope with the increasingly complex and dynamic operating environment. To address this challenge, this paper proposes an airport parking space allocation and scheduling optimization model based on a meta-heuristic algorithm, combining the particle swarm optimization (PSO) algorithm with the Olearning reinforcement learning method, aiming to improve the utilization efficiency of parking space resources and the level of intelligent scheduling. The method uses PSO to examine at the whole scheduling space and Q-learning to make adjustments to allocations depending on feedback from the environment in real time. In terms of research methods, we first constructed a mathematical model with multiple constraints and a comprehensive objective function, used the PSO algorithm to perform preliminary allocation of parking spaces, and introduced an adaptive mechanism to enhance the search capability. At the same time, the Q-learning model continuously optimizes scheduling decisions through interaction with the environment to ensure the optimal balance between the global and local. The hybrid approach enhances both global search and local optimization. The results show that this method is superior to individual PSO, Q-learning and traditional heuristic methods in multiple key indicators, including total scheduling cost, delay time, parking space utilization, algorithm convergence speed, number of scheduling conflicts, calculation time and successful scheduling rate. By coordinating factors such as cost, time and safety, the model can significantly improve airport operating efficiency, reduce flight delays and optimize resource allocation. With the CloudSim toolkit to run tests in a simulated cloud environment shows that our strategy cuts the average task latency by 15.2% and the overall scheduling cost by 12.5% compared to classic PSO and heuristic methods. The suggested approach works most effective when there are constraints on items like resource capacity, task deadlines, and energy use. The evaluation measures, which include makespan, cost, and delay time, show that the hybrid strategy works well and is strong.

Details

1009240
Business indexing term
Title
Hybrid Particle Swarm Optimization and Q-Learning for Airport Parking Space Allocation and Scheduling
Author
Huang, Chunxin 1 

 College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, China 
Publication title
Informatica; Ljubljana
Volume
49
Issue
31
Pages
71-86
Number of pages
17
Publication year
2025
Publication date
Sep 2025
Publisher
Slovenian Society Informatika / Slovensko drustvo Informatika
Place of publication
Ljubljana
Country of publication
Slovenia
Publication subject
ISSN
03505596
e-ISSN
18543871
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
3254942313
Document URL
https://www.proquest.com/scholarly-journals/hybrid-particle-swarm-optimization-q-learning/docview/3254942313/se-2?accountid=208611
Copyright
© 2025. This work is published under https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-09-27
Database
ProQuest One Academic