Content area

Abstract

The present study is centered on the vortexlets in the shock wave diffraction over three different slabs (60°, 90°, and 120°) for shock Mach numbers of 1.65, and 3.0. The third-order accurate implicit solver is built on advection upstream splitting along with least squares cell-based method and utilizes the benefits of refined mesh in the regions having high discontinuities. Vortexlet formation, pressure ratio and specific heat flux on the step wall, and movement of the separation point are some of the key aspects of the present analysis. For the numerical simulation of the moving shock, the Finite Volume Method is utilized to find the solutions of the governing equations. Vortexlets, secondary shock, embedded shock, contact surface, slipstream, expansion fan, and vortex are captured precisely. Apart from isopycnics; isobars, isotherms, and velocity contours are plotted as well. Our results emphasize the fact that there exists two types of vortexlets, which are different in their positions apart from their driving mechanisms.

Full text

Turn on search term navigation

© The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2025.