References
1. Attia, S., Kurnitski, J., Kosinski, P., Borodinecs, A., Deme Belafi, Z., Istvan, K. et al. Overview and future challenges of nearly zero-energy building (nZEB) design in Eastern Europe. Energy Build., 2022, 267, 112165. http://dx.doi.org/10.1016/j.en build.2022.112165
2. Carvalho, E. L., Blinov, A., Chub, A, Emiliani, P., de Carne, С. and Vinnikov, D. Grid integration of DC buildings: standards, requirements and power converter topologies. IEEE Open J. Power Electron., 2022, 3, 798-823. https://doi.org/10.1109/0] PEL.2022.3217741
3. Chub, A, Vinnikov, D., Korkh, O., Malinowski, М. and Kouro, $. Ultrawide voltage gain range microconverter for integration of silicon and thin-film photovoltaic modules in DC microgrids. IEEE Trans. Power Electron., 2021, 36(12), 13763-13778. https://doi.org/10.1109/TPEL.2021.3084918
4. Husev, O., Matiushkin, O., Vinnikov, D., Roncero-Clemente, С. and Kouro, S. Novel concept of solar converter with universal applicability for DC and AC microgrids. [EEE Trans. Ind. Electron. 2022, 69(5), 4329-4341. https://doi.org/10.1109/TIE. 2021.3086436
5. Nguyen, T. L. and Griepentrog, G. Modeling, control and stability analysis for a DC nanogrid system. In 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, Italy, 25-28 June 2018. IEEE, 2018, 1-8.
6. Abdel-Rahim, O., Chub, A, Vinnikov, D. and Blinov, A. DC integration of residential photovoltaic systems: a survey. IEEE Access, 2022, 10, 66974-66991. https://doi.org/10.1109/ACCE SS.2022.3185788
7. Roasto, I, Blinov, A. and Vinnikov, D. Soft start algorithm for a droop controlled DC nanogrid. In 2022 18th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 4-6 October 2022. IEEE, 2022, 1-6
8. Mackay, L., van der Blij, N. H., Ramirez-Elizondo, L and Bauer, P. Toward the universal DC distribution system. Electr: Power Compon. Syst., 2017, 45, 1032-1042. https://doi.org/10. 1080/15325008.2017.1318977
9. Wan, M., Dong, R., Yang, J., Xu, Z., Zhang, В. and He, К. Fault mechanism and protection strategy for DC micro-grid. In 2079 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, Canada, 12-14 June 2019. IEEE, 2019, 2597- 2602
10. Patel, V. and Patel, V. A comprehensive review: AC & DC microgrid protection. In 2020 21st National Power Systems Conference (NPSC), Gandhinagar, India, 17-19 December 2020. IEEE, 2020, 1-6.
Dali, M., Charaabi, Е. and Belhadj, J. Short-circuit fault analysis and protection of stand-alone AC and DC microgrids. In 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Tunis, Tunisia, 26-28 October 2022. IEEE, 2022, 1-6.
Rodrigues, R., Du, Y., Antoniazzi, A. and Cairoli, P. A review of solid-state circuit breakers. IEEE Trans. Power Electron., 2021, 36(1), 364-377. https://doi.org/10.1109/TPEL.2020.3003358
Shen, Z. J., Miao, Z. and Roshandeh, A. M. Solid state circuit breakers for DC microgrids: current status and future trends. In 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, USA, 7-10 June 2015. IEEE, 2015, 228-233.
Anselmo, 1. $. and Rashid, М. H. Solid-state circuit breakers for D.C. microgrid applications. In 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12-13 June 2020. IEEE, 2020, 1-4.
Jalakas, T., Chub, A., Roasto, I. and Vinnikov, D. Hybrid residual current device and solid state circuit breaker for residential DC microgrids. In 2024 19th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 2-4 October 2024. IEEE, 2024, 1-5.
Royal Dutch Standardization Institute (NEN). NL: DC Installations for Low Voltage Standard NPR 9090:2018. 2018, 1-50.
Rodriguez-Diaz, E., Chen, F., Vasquez, J. C., Guerrero, J. M., Burgos, R. and Boroyevich, D. Voltage-level selection of future two-level LV DC distribution grids: a compromise between grid compatibiliy, safety, and efficiency. IEEE Electrif. Mag., 2016, 4(2), 20-28. https://doi.org/10.1109/MELE.2016.2543979
Neyret, Y. DC Microgrids: Principles and Benefits. DC-Systems, 10-11, 2024. https://www.dc.systems/assets/public/DCSystems-White-Paper.pdf (accessed 2024-11-24)
Carvalho, E. L., Blinov, A, Chub, A, Emiliani, P., de Carne, G. and Vinnikov, D. Grid integration of DC buildings: standards, requirements and power converter topologies. IEEE Open J. Power Electron., 2022, 3, 798-823. https://doi.org/10.1109/0JP EL.2022.3217741
International Electrotechnical Comission. ЛЕС 60364-5-52:2009 Low-voltage electrical installations - Part 5-52: Selection and erection of electrical equipment - Wiring systems.
Selamogullari, U. $. and Alsaad, A. Analysis of a residential distribution system with the application of conservation voltage reduction at house level. In 2019 Ist Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 12- 15 June 2019. IEEE, 2019, 430-434.
Palaniappan, K., Sedano, W., Vygoder, M., Hoeft, N., Cuzner, К. and Shen, Z. J. Short-circuit fault discrimination using SiC JFET-based self-powered solid-state circuit breakers in a residential DC community microgrid. [EEE Trans. Ind. Appl., 2020, 56(4), 3466-3476. https://doi.org/10.1109/TIA.2020.2995114
Cuzner, R., MacFarlin, D., Clinger, D., Rumney, M. and Castles, С. Circuit breaker protection considerations in power converter-fed DC systems. In IEEE Electric Ship Technologies Symposium, Baltimore, USA, 20-22 April 2009. IEEE, 2009, 360-367.
Rodrigues, R., Du, Y., Antoniazzi, A. and Cairoli, P. A review of solid-state circuit breakers. IEEE Trans. Power Electron., 2020. 36(1), 364-377. https://doi.org/10.1109/TPEL.2020.3003358
International Electrotechnical Comission. ЛЕС 60898-1:2015/ AMD1:2019/COR1:2020, Corrigendum 1-Amendment 1-Electrical accessories - Circuit-breakers for overcurrent protection Jor household and similar installations.
Shneider Electrics. Acti9 C60H-DC datasheet. https://www.se. com/in/en/product/A9N61531/miniature-circuit-breaker-c60h2-poles-16-a-c-curve (accessed 2024-11-24).
Zhang, L., Tai, N., Huang, W., Liu, J. and Wang, Y. A review on protection of DC microgrids. J. Mod. Power Syst. Clean Energy, 2018, 6(6), 1113-1127. https://doi.org/10.1007/s40565-018-0381-9
Mohanty, R. and Pradhan, A. K. Protection of DC and hybrid AC-DC microgrids with ring configuration. In 2017 7th International Conference on Power Systems (ICPS), Pune, India, 21- 23 December 2017. IEEE, 2017, 607-612.
Salomonsson, D., Soder, L. and Sannino, A. Protection of lowvoltage DC microgrids. IEEE Trans. Power Deliv., 2009, 24(3), 1045-1053. https://doi.org/10.1109/TPWRD.2009.201 6622
Miao, Z., Sabui, G., Moradkhani Roshandeh, A. and Shen, Z. J. Design and analysis of DC solid-state circuit breakers using SiC JFETs. IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4(3), 863-873. https://doi.org/10.1109/JESTPE.2016.2558448
Xu, X., Chen, W., Tao, H., Zhou, Q., Li, Z. and Zhang, В. Design and experimental verification of an efficient SSCB based on CSMCT. IEEE Trans. Power Electron., 2020, 35(11), 11682-11693. https://doi.org/10.1109/TPEL.2020.2987418
Swamy, S. N. and Kota, S. R. An empirical study on system level aspects of Internet of Things (IoT). IEEE Access, 2020, 8, 188082188134. https://doi.org/10.1109/ACCESS.2020.3029847
Ding, J., Nemati, M., Ranaweera, С. and Choi, J. [oT connectivity technologies and applications: a survey. IEEE Access, 2020, 8, 6764667673. https://doi.org/10.1109/ACCESS.2020. 2985932
Buffolo, M., Favero, D., Marcuzzi, A., De Santi, C., Meneghesso, G. and Zanoni, E. Review and outlook on GaN and SiC power devices: industrial state-of-the-art, applications, and perspectives. ZEEE Trans. Electron Devices, 2024, 71(3), 1344-1355. https://doi.org/10.1109/TED.2023.3346369
She, X., Huang, A. Q., Lucia, Ó. and Ozpineci, B. Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron, 2017, 64(10), 8193-8205. https://doi.org/10.1109/ TIE.2017.2652401
Jalakas, T., Chub, A., Roasto, I. and Vinnikov, D. Design of solid state circuit breaker. In 2022 IEEE 63th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 10-12 October 2022. IEEE, 2022, 1-5.
Guiyong, Z., Huaicheng, W., Yu, D., Yanhe, S., Xiaomou, L. and Chuang, B. Design and implementation of high-precision current measurement instrument based on hall sensor. In 2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 15-17 December 2023. IEEE, 2023, 1-5
Yang, W., Zhuo, Y. and Anheuser, M. A residual current measurement method with a combination of MR and Hall effect sensors. In 2010 IEEE International Workshop on Applied Measurements for Power Systems, Aachen, Germany, 22-24 September 2010. IEEE, 2010, 27-30.
Namia-Cohen, Y., Sharon, Y., Khachatryan, B. and Cheskis, D. DC low current Hall effect measurements. In 2018 IEEE International Conference on the Science ofElectrical Engineering in Israel (ICSEE), Eilat, Israel, 12-14 December 2018. IEEE, 2018, 1-4
Oliveira, T. К. Design of a low-cost residual current sensor for ТУРС power distribution application. In 2018 13th IEEE International Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil, 12-14 November 2018. IEEE, 2018, 1313-1319.
Ding, Z., Wang, J., Li, C., Wang, К. and Shao, H. A wideband closed-loop residual current sensor based on self-oscillating fluxgate. IEEE Access, 2023, 11, 134126-134135. https://doi.org/ 10.1109/ACCESS.2023.3335653
Kondalkar, V. V., Li, X., Yang, $. S. and Lee, К. Towards a wireless chip less smart current sensor system based on giant magnetoresistance. In 2017 19th International Conference on SolidState Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18-22 June 2017. IEEE, 2017, 1092-1095.
Xie, F., Weiss, В. and Weigel, К. Giant-magnetoresistance-based galvanically isolated voltage and current measurements. [EEE Trans. Instrum. Meas., 2015, 64(8), 2048-2054. https://doi.org/ 10.1109/TIM.2015.2440553
Cheng, D., Zhang, B., Xiong, S., Xie, Z. and Xue, Z. Residual current detection prototype and simulation method in low voltage DC system. IEEE Access, 2022, 10, 51100-51109. https:// doi.org/10.1109/ACCESS.2022.3172698
TEC 61660-1:1997. Short-circuit currents in d.c. auxiliary installations in power plants and substations - Part 1: Calculation of short-circuit currents.
Emhemed, A. and Burt, С. The effectiveness of using IEC61660 for characterising short-circuit currents of future low voltage DC distribution networks. In 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Stockholm, Sweden, 10-13 June 2013. IEEE, 2013, 1330.