Content area

Abstract

DC microgrids require rapid and reliable techniques for residual current detection and protection against short circuit, overcurrent, and overvoltage. Solid-state circuit breakers provide viable high-speed protection for DC microgrids. Microcontroller-based control circuits, in conjunction with a diverse array of sensors, facilitate rapid fault identification, measurement of various grid parameters, telemetry, and load control, while metal-oxide-semiconductor fieldeffect transistor based switching cells enable swift isolation of these faults. A device that integrates bidirectional solid-state circuit breaker (SSCB) and residual current device (RCD) features into a single hybrid unit is required to safeguard users and linked apparatus. Only a limited number of proven solutions for measuring residual current can be directly utilized in DC grids. Hall effect sensors offer low power consumption and compact physical dimensions. Nonetheless, fluxgate-based current sensors provide enhanced linearity and precision. Therefore, a hybrid SSCB/RCD protection device that operates as such is proposed in this paper. The primary design and implementation challenges of DC microgrids and various residual current measurement techniques were examined to assess the proposed hybrid device. The power circuit topology was selected, and a compact prototype was developed and evaluated in the laboratory. Conducted tests demonstrated its conformance with requirements, usefulness in residential 350 V DC microgrids, and capability to safeguard the microgrid from short circuits, users from electric shock, and the grid from overloads caused by connected devices.

Alternate abstract:

Majapidamiste alalisvoolu mikrovérgud vajavad kiireid ja usaldusväärseid tehnoloogilisi lahendusi rikkevoolu tuvastamiseks ning kaitseks úlekoormuse, liigvoolu ja úlepinge eest. Alalisvoolu mikrovórgud, mida sageli iseloomustab suur mahtuvus ja madal induktiivsus, ei ühildu hästi traditsiooniliste sulavkaitsmete, elektrotermiliste kaitselúilitite ja rikkevoolu tuvastamise seadmetega, mis on móeldud kasutamiseks vahelduvvoolu energiasüsteemides. Lahendust sellele probleemile pakuvad pooljuhtkaitselúlitid. Mikrokontrolleripóhised juhtahelad koos mitmesuguste anduritega hólbustavad rikete kiiret tuvastamist, vórgu parameetrite môôtmist, telemeetriat ja koormuste juhtimist, samas kui valjatransistoride póhised lülituselemendid vôimaldavad rikked kiiresti vórgust eraldada. Selliste nôuete táitmiseks on vaja seadet, mis integreerib pooljuhtkaitselüliti ja rikkevoolukaitse funktsioonid ühte hübriidseadmesse. Voolu ja pinge kiire móótmine on väga lihtne, ent kasutajate ja Uhendatud seadmete kaitsmiseks on vaja ka töökindlaid meetodeid alalisvoolu jââkvoolu móótmiseks. Alalisvooluvérkudes saab rikkevoolu móótmiseks otse kasutada vaid piiratud arvu lahendusi. Váikeste lekkevoolude móótmiseks on vaja kas fluxgate-tüüpi voi Halli efekti andurit voi mónda muud alternatiivset aktiivset anduritehnoloogiat. Halli efekti andurid on energiatóhusad ja kompaktsed, samas kui fluxgate-tüüpi vooluandurid tagavad parema lineaarsuse ja tápsuse. Seetóttu soovitatakse válja tôôtada hübriid-alalisvoolukaitseseade, mis toimiks nii pooljuhtkaitselüliti kui ka rikkevooluandurina. Pakutud hübriidseadme hindamiseks uuriti alalisvoolu mikrovôrkude ja erinevate rikkevoolu móótmistehnikate projekteerimise ja rakendamise aspekte, valiti sobiv toiteahela topoloogia, tôôtati välja kompaktne prototüüp ja hinnati selle toimivust laboratoorsetes tingimustes. Läbiviidud testid näitasid seadme vastavust nóuetele, kasulikkust elamute 350 V alalisvoolu mikrovórkudes ning vôimet kaitsta mikrovôrku lúhiste ja selle kasutajaid elektrilôôgi eest ning vôrku Ühendatud seadmeid ülekoormuse eest.

Full text

Turn on search term navigation

© 2025. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.