Content area

Abstract

In this paper, the recent shifted-exponential variation property which is defined as the ratio of variance to the squared of shifted expectation is investigated for both three-parameter Weibull and log-logistic models. These nonnegative semicontinuous models are widely considered in engineering, economics, hydrology, demography and many other fields. It is shown that the log-logistic distribution corresponds to over-, equi-, and under-varied if and only if its only positive shape parameter is greater, equal and less than the determined value , respectively. Similar result holds for the Weibull distribution with and extends the one of two-parameter model. The Newton–Raphson method is used to determine the approximative value of the log-logistic model; it can thus lead to the reference shifted-exponential model, as for of the Weibull one. The relative variation between Weibull and log-logistic is also mentioned. Finally, two illustrative applications are provided.

Details

Title
The Shifted-Exponential Variation Property for the Weibull and Log-Logistic Models
Author
Sawadogo, Amadou 1   VIAFID ORCID Logo  ; Bourguignon, Marcelo 2 ; Kokonendji, Célestin C. 3   VIAFID ORCID Logo 

 UFR de Mathématiques et Informatique, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire (GRID:grid.410694.e) (ISNI:0000 0001 2176 6353) 
 Departamento de Estatistica, Universidade Federal do Rio Grande do Norte, Natal, Brazil (GRID:grid.411233.6) (ISNI:0000 0000 9687 399X) 
 Laboratoire de Mathématiques de Besançon UMR 6623 CNRS-UMPL, Université Marie & Louis Pasteur, Besançon Cedex, France (GRID:grid.411233.6); Laboratoire de Mathématiques et Connexes de Bangui, Université de Bangui, Bangui B.P., Central African Republic (GRID:grid.25077.37) (ISNI:0000 0000 9737 7808) 
Pages
67-74
Publication year
2025
Publication date
Mar 2025
Publisher
Springer Nature B.V.
ISSN
10665307
e-ISSN
19348045
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3256938764
Copyright
© Allerton Press, Inc. 2025.