Content area

Abstract

Background

The advancement of technology and continuous glucose monitoring (CGM) systems has introduced several computational and technical challenges for clinicians and researchers. The growing volume of CGM data necessitates the development of efficient computational tools capable of handling and processing this information effectively. This paper introduces GlucoStats, an open-source and multi-processing Python library designed for efficient computation and visualization of a comprehensive set of glucose metrics derived from CGM. It simplifies the traditionally time-consuming and error-prone process of manual CGM metrics calculation, making it a valuable tool for both clinical and research applications.

Results

Its modular design ensures easy integration into predefined workflows, while its user-friendly interface and extensive documentation make it accessible to a broad audience, including clinicians and researchers. GlucoStats offers several key features: (i) window-based time series analysis, enabling time series division into smaller ‘windows’ for detailed temporal analysis, particularly beneficial for CGM data; (ii) advanced visualization tools, providing intuitive, high-quality visualizations that facilitate pattern recognition, trend analysis, and anomaly detection in CGM data; (iii) parallelization, leveraging parallel computing to efficiently handle large CGM datasets by distributing computations across multiple processors; and (iv) scikit-learn compatibility, adhering to the standardized interface of scikit-learn to allow an easy integration into machine learning pipelines for end-to-end analysis.

Conclusions

GlucoStats demonstrates high efficiency in processing large-scale medical datasets in minimal time. Its modular design enables easy customization and extension, making it adaptable to diverse research and clinical needs. By offering precise CGM data analysis and user-friendly visualization tools, it serves both technical researchers and non-technical users, such as physicians and patients, with practical and research-driven applications.

Details

1009240
Business indexing term
Title
Glucostats: an efficient Python library for glucose time series feature extraction and visual analysis
Publication title
Volume
26
Pages
1-16
Number of pages
17
Publication year
2025
Publication date
2025
Section
Software
Publisher
Springer Nature B.V.
Place of publication
London
Country of publication
Netherlands
Publication subject
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-09-24
Milestone dates
2025-05-14 (Received); 2025-08-08 (Accepted); 2025-09-24 (Published)
Publication history
 
 
   First posting date
24 Sep 2025
ProQuest document ID
3257227184
Document URL
https://www.proquest.com/scholarly-journals/glucostats-efficient-python-library-glucose-time/docview/3257227184/se-2?accountid=208611
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-10-05
Database
ProQuest One Academic