Content area
The host range of a bacteriophage—the diversity of hosts it can infect—is central to understanding phage ecology and applications. Whereas most well-characterized phages have narrow host ranges, broad-host–range phages represent an intriguing component of marine ecosystems. The genetic and evolutionary mechanisms driving their generalism remain poorly understood. In this study, we analyzed Schizotequatroviruses and their Vibrio crassostreae hosts, collected from an oyster farm. Schizotequatroviruses exhibit broad host ranges, large genomes (~252 kbp) encoding 26 transfer ribonucleic acids, and conserved genomic organization interspersed with recombination hotspots. These recombination events, particularly in regions encoding receptor-binding proteins and antidefense systems, highlight their adaptability to host resistance. Some lineages demonstrated the ability of receptor-switching between OmpK and LamB. Despite their broad host range, Schizotequatroviruses were rare in the environment. Their scarcity could not be attributed to burst size, which was comparable to other phages in vitro, but may result from ecological constraints or fitness trade-offs, such as their preference for targeting generalist vibrios in seawater rather than the patho-phylotypes selected in oyster farms. Our findings clarify the genetic and ecological variables shaping Schizotequatrovirus generalism and provide a foundation for future phage applications in aquaculture and beyond.
Details
1 Institut Pasteur, Université de Paris, Centre nationale de la recherche scientifique (CNRS), Unité mixte de recherche (UMR) 3525, Microbial Evolutionary Genomics, 28 rue du Dr Roux, 75015 Paris, France [email protected]
2 Institut Français de recherche pour l'exploitation de la mer (IFREMER), Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280 Plouzané, France; Sorbonne Universités, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29688 Roscoff, France; UMR 5244, Interactions hôtes-pathogènes-environnements (IHPE), Université de Montpellier, CNRS, IFREMER, Université de Perpignan via Domitia, Montpellier F-34090, France
3 Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, 2900, boul. Édouard-Montpetit, QC H3T 1J4 Montréal, Canada
4 Institut Français de recherche pour l'exploitation de la mer (IFREMER), Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280 Plouzané, France; Sorbonne Universités, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29688 Roscoff, France
5 Sorbonne Universités, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29688 Roscoff, France
6 Biochemistry and Molecular Division, New England Biolabs, 240 County Road Ipswich, MA 01938, United States
7 Institut Français de recherche pour l'exploitation de la mer (IFREMER), Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280 Plouzané, France; Sorbonne Universités, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29688 Roscoff, France; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, 2900, boul. Édouard-Montpetit, QC H3T 1J4 Montréal, Canada [email protected]
