Content area

Abstract

This study investigates the thermal optimization of ternary nanofluids, especially focusing on sensitivity analysis of the physical parameters. This study provides an efficient thermal management system that is essential in sophisticated cooling systems, such as electric vehicle battery packs and aerospace engines, to avoid overheating and maintain uniform temperature distribution. A statistical approach is used to analyze the skin friction and heat transfer rate via Response Surface Methodology and Analysis of Variance. Furthermore, irreversibility analysis is also calculated, arising due to Joule heating and viscous dissipation. A non-similar transformation is used to convert the boundary layer equations into dimensionless partial differential equations. The system of partial differential equations is converted into an ordinary differential equation using a local non-similar method up to second-order truncation. These systems of ordinary differential equations are solved numerically via bvp4c. Sensitivity analysis is performed for drag force and heat transfer rate for input parameters. The correlations between input factors and output responses are created via the use of analysis of variance tables, which is beneficial for regression analysis. The high values of \({{R}^2} = 99.84\% ,\ {{R}^2}( {\mathrm{ Adj}} ) = 99.70\% \) for drag force and \({{R}^2} = 99.97\% ,\ {{R}^2}( {\rm Adj} ) = 99.94\% \) for heat transfer rate show that high validity of analysis of variance results is obtained to perform sensitivity analysis. The results conclude that the Hartmann number is the most impactful factor among other parameters for friction and heat transfer rate at the surface. The Eckert number and volume fraction coefficient are caused to rise in entropy generation.

Details

1009240
Title
Computational modelling and sensitivity analysis of heat transfer in ternary nanofluids using response surface methodology
Author
Haq, Sami Ul 1   VIAFID ORCID Logo  ; Ashraf, Muhammad Bilal 1   VIAFID ORCID Logo  ; Tanveer, Arooj 1   VIAFID ORCID Logo  ; Ro, Jongsuk 2   VIAFID ORCID Logo  ; Awwad, Fuad A 3   VIAFID ORCID Logo  ; Ismail, Emad A A 3   VIAFID ORCID Logo 

 Department of Mathematics, COMSATS University Islamabad (CUI), 45550 Park Road, Tarlai Kalan, Islamabad, Pakistan 
 School of Electrical and Electronics Engineering, Chung-Ang University, Dongjak gu, Seoul 06974, Republic of Korea; Department of Intelligent Energy and Industry, Chung-Ang University, Dongjak gu, Seoul 06974, Republic of Korea  [email protected]
 Department of Quantitative Analysis, College of Business Administration, King Saud University, PO Box 71115, Riyadh 11587, Saudi Arabia 
Author e-mail address
Volume
12
Issue
8
First page
173
End page
192
Number of pages
21
Publication year
2025
Publication date
Aug 2025
Section
Research Article
Publisher
Oxford University Press
Place of publication
Oxford
Country of publication
United Kingdom
ISSN
22885048
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-07-23
Milestone dates
2024-12-25 (Received); 2025-06-27 (Rev-Recd); 2025-06-29 (Accepted); 2025-08-22 (Corrected-Typeset)
Publication history
 
 
   First posting date
23 Jul 2025
ProQuest document ID
3258457301
Document URL
https://www.proquest.com/scholarly-journals/computational-modelling-sensitivity-analysis-heat/docview/3258457301/se-2?accountid=208611
Copyright
© 2025 The Author(s) 2025. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-10-22
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic