Content area

Abstract

Conformal phased arrays promise shape-changing properties, multiple degrees of freedom in the scan angle, and applications for edge computing, including devices for wearable, airborne, and seaborne platforms. However, they have suffered from two critical limitations. (1) Although most applications require on-the-move communication and sensing, prior conformal arrays have suffered from dynamic deformation-induced beam pointing errors. This work introduces a dynamic beam-stabilized processor capable of beam adaptation through on-chip real-time control of fundamental gain, phase, and delay for each element. (2) Prior conformal arrays have leveraged additive printing to enhance flexibility, but conventional printable inks based on silver are expensive, and those based on copper suffer from spontaneous metal oxidation that alters trace impedance and degrades beamforming performance. Instead, we leverage a low-cost copper molecular decomposition ink with  < 0.1% variation per °C across temperature and strain, and corrects any residual deformity in real-time using the dynamic beam-stabilized processor. Demonstrating unified material and physical deformation correction, our silicon-integrated dynamic beam-stabilized processor is low-power, low-area, and easily scalable due to tile-based architecture, thereby ideal for on-device implementations.

Authors present a flexible antenna array with a processor that stabilizes beams in real-time, addressing errors from dynamic deformation. It uses a cost-effective copper ink for printing, ensuring stable performance under strain and temperature changes, suitable for wearable and portable devices.

Full text

Turn on search term navigation

© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.