Content area

Abstract

To address the challenges of multi-scale missed detections, false positives, and incomplete boundary segmentation in cotton field residual plastic film detection, this study proposes the RSE-YOLO-Seg model. First, a PKI module (adaptive receptive field) is integrated into the C3K2 block and combined with the SegNext attention mechanism (multi-scale convolutional kernels) to capture multi-scale residual film features. Second, RFCAConv replaces standard convolutional layers to differentially process regions and receptive fields of different sizes, and an Efficient-Head is designed to reduce parameters. Finally, an NM-IoU loss function is proposed to enhance small residual film detection and boundary segmentation. Experiments on a self-constructed dataset show that RSE-YOLO-Seg improves the object detection average precision (mAP50(B)) by 3% and mask segmentation average precision (mAP50(M)) by 2.7% compared with the baseline, with all module improvements being statistically significant (p < 0.05). Across four complex scenarios, it exhibits stronger robustness than mainstream models (YOLOv5n-seg, YOLOv8n-seg, YOLOv10n-seg, YOLO11n-seg), and achieves 17/38 FPS on Jetson Nano B01/Orin. Additionally, when combined with DeepSORT, compared with random image sampling, the mean error between predicted and actual residual film area decreases from 232.30 cm2 to 142.00 cm2, and the root mean square error (RMSE) drops from 251.53 cm2 to 130.25 cm2. This effectively mitigates pose-induced random errors in static images and significantly improves area estimation accuracy.

Details

1009240
Business indexing term
Location
Title
An Instance Segmentation Method for Agricultural Plastic Residual Film on Cotton Fields Based on RSE-YOLO-Seg
Author
Fang Huimin 1   VIAFID ORCID Logo  ; Xu Quanwang 2 ; Chen Xuegeng 3 ; Wang, Xinzhong 4   VIAFID ORCID Logo  ; Yan, Limin 5 ; Zhang, Qingyi 4   VIAFID ORCID Logo 

 School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; [email protected] (H.F.); [email protected] (Q.X.); [email protected] (X.C.); [email protected] (X.W.), Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, China, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Zhenjiang 212013, China 
 School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; [email protected] (H.F.); [email protected] (Q.X.); [email protected] (X.C.); [email protected] (X.W.) 
 School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; [email protected] (H.F.); [email protected] (Q.X.); [email protected] (X.C.); [email protected] (X.W.), College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China; [email protected] 
 School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; [email protected] (H.F.); [email protected] (Q.X.); [email protected] (X.C.); [email protected] (X.W.), Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, China, College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China; [email protected] 
 College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China; [email protected] 
Publication title
Volume
15
Issue
19
First page
2025
Number of pages
32
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-09-26
Milestone dates
2025-08-01 (Received); 2025-09-24 (Accepted)
Publication history
 
 
   First posting date
26 Sep 2025
ProQuest document ID
3261049500
Document URL
https://www.proquest.com/scholarly-journals/instance-segmentation-method-agricultural-plastic/docview/3261049500/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-10-16
Database
ProQuest One Academic