Content area
This study investigates the interpretation of hand gestures in nonverbal communication, with particular attention paid to cases where gesture form does not reliably convey the intended meaning. Hand gestures are a key medium for expressing impressions, complementing or substituting verbal communication. For example, the “Thumbs Up” gesture is generally associated with approval, yet its interpretation can vary across contexts and individuals. Using participant-generated descriptive words, sentiment analysis with the VADER method, and fuzzy membership modeling, this research examines the variability and ambiguity in gesture–intention mappings. Our results show that Negative gestures, such as “Thumbs Down,” consistently align with Negative sentiment, while Positive and Neutral gestures, including “Thumbs Sideways” and “So-so,” exhibit greater interpretive flexibility, often spanning adjacent sentiment categories. These findings demonstrate that rigid, category-based classification systems risk oversimplifying nonverbal communication, particularly for gestures with higher interpretive uncertainty. The proposed fuzzy logic-based framework offers a more context-sensitive and human-aligned approach to modeling gesture intention, with implications for affective computing, behavioral analysis, and human–computer interaction.