Content area
Mathematical optimization, in both continuous and discrete forms, is well established and widely applied. This work addresses a gap in the literature by focusing on large-number optimization, where integers or fractions with hundreds of digits occur in decision variables, objective functions, or constraints. Such problems challenge standard optimization tools, particularly when exact solutions are required. The suitability of computer algebra systems and high-precision arithmetic software for large-number optimization problems is discussed. Our first contribution is the development of Python implementations of an exact Simplex algorithm and a Branch-and-Bound algorithm for integer linear programming, capable of handling arbitrarily large integers. To test these implementations for correctness, analytic optimal solutions for nine specifically constructed linear, integer linear, and quadratic mixed-integer programming problems are derived. These examples are used to test and verify the developed software and can also serve as benchmarks for future research in large-number optimization. The second contribution concerns constructing partially increasing subsequences of the Collatz sequence. Motivated by this example, we quickly encountered the limits of commercial mixed-integer solvers and instead solved Diophantine equations or applied modular arithmetic techniques to obtain partial Collatz sequences. For any given number J, we obtain a sequence that begins at
Details
Fractions;
Software;
Computer algebra;
Linear programming;
Integer programming;
Mathematical analysis;
Parameter identification;
Mathematical programming;
Optimization;
Real time;
Python;
Systems engineering;
Diophantine equation;
Programming languages;
Arithmetic;
Exact solutions;
Algorithms;
Sequences;
Mixed integer;
Libraries