Content area

Abstract

Cardiovascular disease (CVD) is the leading global cause of death, highlighting the urgent need for early, accurate, and interpretable diagnostic tools. However, many AI-based heart disease prediction models lack transparency, hindering their acceptance in clinical settings. This study proposes XAI-HD, a hybrid framework integrating machine learning (ML), deep learning (DL), and explainable AI (XAI) techniques for heart disease detection. The framework systematically addresses key challenges, including class imbalance, missing data, and feature inconsistency, through advanced preprocessing and class-balancing methods such as OSS, NCR, SMOTEN, ADASYN, SMOTETomek, and SMOTEENN. Comparative performance evaluations across multiple datasets (CHD, FHD, SHD) demonstrate that XAI-HD reduces classification error rates by 20–25% compared to traditional ML-based models, achieving superior accuracy, precision, recall, and F1-score. Additionally, SHAP and LIME-based feature importance analysis enhances model interpretability, fostering trust among medical professionals. The proposed framework holds significant real-world applicability, including seamless integration into hospital decision support systems, electronic health records (EHR), and real-time cardiac risk assessment platforms. Unlike conventional AI-driven cardiovascular risk prediction models, XAI-HD offers a more balanced, interpretable, and computationally efficient solution, ensuring both predictive accuracy and practical feasibility in clinical environments. Statistical validation using Wilcoxon signed-rank tests confirms the performance gains, and complexity analysis shows the framework is scalable for large-scale deployment.

Details

10000008
Title
XAI-HD: an explainable artificial intelligence framework for heart disease detection
Author
Talukder, Md. Alamin 1   VIAFID ORCID Logo  ; Talaat, Amira Samy 2 ; Kazi, Mohsin 3   VIAFID ORCID Logo  ; Khraisat, Ansam 4 

 International University of Business Agriculture and Technology, Department of Computer Science and Engineering, Dhaka, Bangladesh (GRID:grid.443015.7) (ISNI:0000 0001 2222 8047) 
 Electronics Research Institute, Computers and Systems Department, Cairo, Egypt (GRID:grid.463242.5) (ISNI:0000 0004 0387 2680) 
 King Saud University, Department of Pharmaceutics, College of Pharmacy, Riyadh 11451, Saudi Arabia (GRID:grid.56302.32) (ISNI:0000 0004 1773 5396) 
 Deakin University, School of Information Technology, Burwood 3125, Australia (GRID:grid.1021.2) (ISNI:0000 0001 0526 7079) 
Publication title
Volume
58
Issue
12
Pages
385
Publication year
2025
Publication date
Dec 2025
Publisher
Springer Nature B.V.
Place of publication
Dordrecht
Country of publication
Netherlands
ISSN
02692821
e-ISSN
15737462
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-10-17
Milestone dates
2025-08-31 (Registration); 2024-12-18 (Received); 2025-08-31 (Accepted)
Publication history
 
 
   First posting date
17 Oct 2025
ProQuest document ID
3261923731
Document URL
https://www.proquest.com/scholarly-journals/xai-hd-explainable-artificial-intelligence/docview/3261923731/se-2?accountid=208611
Copyright
© Crown 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-06
Database
ProQuest One Academic