Content area

Abstract

Generative steganography (GS) generates stego-media via secret messages, but existing GS only targets single-type multimedia data with poor universality. The generator and extractor sizes are highly coupled with resolution. Message mapping converts secret messages and noise, yet current GS schemes based on it use gridded data, failing to generate diverse multimedia universally. Inspired by implicit neural representation (INR), we propose generative implicit steganography via message mapping (GIS). We designed single-bit and multi-bit message mapping schemes in function domains. The scheme’s function generator eliminates the coupling between model and gridded data sizes, enabling diverse multimedia generation and breaking resolution limits. A dedicated point cloud extractor is trained for adaptability. Through a literature review, this scheme is the first to perform message mapping in the functional domain. During the experiment, taking images as an example, methods such as PSNR, StegExpose, and neural pruning were used to demonstrate that the generated image quality is almost indistinguishable from the real image. At the same time, the generated image is robust. The accuracy of message extraction can reach 96.88% when the embedding capacity is 1 bpp, 89.84% when the embedding capacity is 2 bpp, and 82.21% when the pruning rate is 0.3.

Details

1009240
Title
Generative Implicit Steganography via Message Mapping
Publication title
Volume
15
Issue
20
First page
11041
Number of pages
19
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-10-15
Milestone dates
2025-08-25 (Received); 2025-10-07 (Accepted)
Publication history
 
 
   First posting date
15 Oct 2025
ProQuest document ID
3265828422
Document URL
https://www.proquest.com/scholarly-journals/generative-implicit-steganography-via-message/docview/3265828422/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-10-28
Database
ProQuest One Academic