Content area

Abstract

The design of informatively rich input signals is essential for accurate system identification, yet classical Fisher-information-based methods are inherently local and often inadequate in the presence of significant model uncertainty and non-linearity. This paper develops a Bayesian approach that uses the mutual information (MI) between observations and parameters as the utility function. To address the computational intractability of the MI, we maximize a tractable MI lower bound. The method is then applied to the design of an input signal for the identification of quasi-linear stochastic dynamical systems. Evaluating the MI lower bound requires the inversion of large covariance matrices whose dimensions scale with the number of data points N. To overcome this problem, an algorithm that reduces the dimension of the matrices to be inverted by a factor of N is developed, making the approach feasible for long experiments. The proposed Bayesian method is compared with the average D-optimal design method, a semi-Bayesian approach, and its advantages are demonstrated. The effectiveness of the proposed method is further illustrated through four examples, including atomic sensor models, where input signals that generate a large amount of MI are especially important for reducing the estimation error.

Details

1009240
Title
An Approximate Bayesian Approach to Optimal Input Signal Design for System Identification
Publication title
Entropy; Basel
Volume
27
Issue
10
First page
1041
Number of pages
33
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-10-07
Milestone dates
2025-09-11 (Received); 2025-10-03 (Accepted)
Publication history
 
 
   First posting date
07 Oct 2025
ProQuest document ID
3265896189
Document URL
https://www.proquest.com/scholarly-journals/approximate-bayesian-approach-optimal-input/docview/3265896189/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-10-28
Database
ProQuest One Academic