Content area

Abstract

This paper introduces KG-FLoc, a knowledge graph-enhanced framework for secondary circuit fault localization in intelligent substations. The proposed KG-FLoc innovatively formalizes secondary components (e.g., circuit breakers, disconnectors) as graph nodes and their multi-dimensional relationships (e.g., electrical connections, control logic) as edges, constructing the first comprehensive knowledge graph (KG) to structurally and operationally model secondary circuits. By reframing fault localization as a knowledge graph link prediction task, KG-FLoc identifies missing or abnormal connections (edges) as fault indicators. To address dynamic topologies and sparse fault samples, KG-FLoc integrates two core innovations: (1) a relation-aware gated unit (RGU) that dynamically regulates information flow through adaptive gating mechanisms, and (2) a hierarchical graph isomorphism network (GIN) architecture for multi-scale feature extraction. Evaluated on real-world datasets from 110 kV/220 kV substations, KG-FLoc achieves 97.2% accuracy in single-fault scenarios and 93.9% accuracy in triple-fault scenarios, surpassing SVM, RF, MLP, and standard GNN baselines by 12.4–31.6%. Beyond enhancing substation reliability, KG-FLoc establishes a knowledge-aware paradigm for fault diagnosis in industrial systems, enabling precise reasoning over complex interdependencies.

Details

1009240
Business indexing term
Title
KG-FLoc: Knowledge Graph-Enhanced Fault Localization in Secondary Circuits via Relation-Aware Graph Neural Networks
Publication title
Volume
14
Issue
20
First page
4006
Number of pages
18
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-10-13
Milestone dates
2025-08-14 (Received); 2025-10-01 (Accepted)
Publication history
 
 
   First posting date
13 Oct 2025
ProQuest document ID
3265896504
Document URL
https://www.proquest.com/scholarly-journals/kg-floc-knowledge-graph-enhanced-fault/docview/3265896504/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-10-28
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic