Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Agricultural robots operating in greenhouse environments face substantial challenges in detecting tomato stems, including fluctuating lighting, cluttered backgrounds, and the stems’ inherently slender morphology. This study introduces EfficientV1-C2fDWR-IRMB-YOLO (EDI-YOLO), an enhanced model built on YOLOv8n-seg. First, the original backbone is replaced with EfficientNetV1, yielding a 2.3% increase in mAP50 and a 2.6 G reduction in FLOPs. Second, we design a C2f-DWR module that integrates multi-branch dilations with residual connections, enlarging the receptive field and strengthening long-range dependencies; this improves slender-object segmentation by 1.4%. Third, an Inverted Residual Mobile Block (iRMB) is inserted into the neck to apply spatial attention and dual residual paths, boosting key-feature extraction by 1.5% with only +0.7GFLOPs. On a custom tomato-stem dataset, EDI-YOLO achieves 79.3% mAP50 and 33.9% mAP50-95, outperforming the baseline YOLOv8n-seg (75.1%, 31.4%) by 4.2% and 2.6%, and YOLOv5s-seg (66.7%), YOLOv7tiny-seg (75.4%), and YOLOv12s-seg (75.4%) by 12.6%, 3.9%, and 3.9% in mAP50, respectively. Significant improvement is achieved in lateral branch segmentation (60.4% → 65.2%). Running at 86.2 FPS with only 10.4GFLOPs and 8.0 M parameters, EDI-YOLO demonstrates an optimal trade-off between accuracy and efficiency.

Details

Title
EDI-YOLO: An Instance Segmentation Network for Tomato Main Stems and Lateral Branches in Greenhouse Environments
Author
Ji, Peng 1 ; Yang Nengwei 2 ; Sen, Lin 3 ; Xiong Ya 3 

 School of Machinery and Equipment Engineering, Hebei University of Engineering, Handan 056038, China, Xiongan Institute of Green Water Network and Life Health, Xiong’an New Area 071799, China 
 School of Machinery and Equipment Engineering, Hebei University of Engineering, Handan 056038, China, Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China 
 Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China 
First page
1260
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23117524
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3265911311
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.