Content area

Abstract

Digital twins (DTs) offer significant promise for condition-based maintenance of floating offshore wind turbines (FOWTs); however, existing solutions typically compromise either on physical rigor or real-time computational performance. This paper presents a real-time DT framework that resolves this trade-off by embedding a hydro-elastic reduced-order model (ROM) that accurately captures structural dynamics and fluid–structure interaction. Integrated in a cloud-ready Internet of Things architecture, the ROM reconstructs full-field displacements, von Mises stresses, and fatigue metrics with near real-time responsiveness. Validation on the 5 MW OC4-DeepCWind semi-submersible platform shows that the ROM reproduces finite-element (FEM) displacements and stresses with relative errors below 1%. A three-hour load case is solved in 0.69 min for displacements and 3.81 min for stresses on a consumer-grade NVIDIA RTX 4070 Ti GPU—over two orders of magnitude faster than the full FEM model—while one million fatigue stress histories (1000 hotspots × 1000 operating scenarios) are processed in 37 min. This efficiency enables continuous structural monitoring, rapid *what-if* assessments and timely decision-making for targeted inspections and adaptive control. By effectively combining physics-based reduced-order modeling with high-throughput computation, the proposed framework overcomes key barriers to DT deployment: computational overhead, physical fidelity and scalability. Although demonstrated on a steel platform, the approach is readily extensible to composite structures and multi-turbine arrays, providing a robust foundation for cost-effective and reliable deep-water wind-energy operations.

Details

1009240
Title
Real-Time Digital Twin for Structural Health Monitoring of Floating Offshore Wind Turbines
Author
Pastor-Sanchez, Andres 1   VIAFID ORCID Logo  ; Garcia-Espinosa, Julio 1   VIAFID ORCID Logo  ; Di Capua Daniel 2   VIAFID ORCID Logo  ; Servan-Camas Borja 3   VIAFID ORCID Logo  ; Berdugo-Parada Irene 3   VIAFID ORCID Logo 

 Departamento de Arquitectura, Construcción y Sistemas Oceánicos y Navales, Escuela Técnica Superior de Ingenieros Navales, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain, Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Gran Capitan s/n, 08034 Barcelona, Spain; [email protected] (D.D.C.); [email protected] (B.S.-C.); [email protected] (I.B.-P.) 
 Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Gran Capitan s/n, 08034 Barcelona, Spain; [email protected] (D.D.C.); [email protected] (B.S.-C.); [email protected] (I.B.-P.), Departamento de Resistencia de Materiales y Estructuras a la Ingeniería (RMEE), Universidad Politécnica de Cataluña (UPC), 08019 Barcelona, Spain 
 Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Gran Capitan s/n, 08034 Barcelona, Spain; [email protected] (D.D.C.); [email protected] (B.S.-C.); [email protected] (I.B.-P.) 
Volume
13
Issue
10
First page
1953
Number of pages
27
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-10-12
Milestone dates
2025-09-11 (Received); 2025-10-08 (Accepted)
Publication history
 
 
   First posting date
12 Oct 2025
ProQuest document ID
3265915339
Document URL
https://www.proquest.com/scholarly-journals/real-time-digital-twin-structural-health/docview/3265915339/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-10-28
Database
ProQuest One Academic