Content area
Digital twins (DTs) offer significant promise for condition-based maintenance of floating offshore wind turbines (FOWTs); however, existing solutions typically compromise either on physical rigor or real-time computational performance. This paper presents a real-time DT framework that resolves this trade-off by embedding a hydro-elastic reduced-order model (ROM) that accurately captures structural dynamics and fluid–structure interaction. Integrated in a cloud-ready Internet of Things architecture, the ROM reconstructs full-field displacements, von Mises stresses, and fatigue metrics with near real-time responsiveness. Validation on the 5 MW OC4-DeepCWind semi-submersible platform shows that the ROM reproduces finite-element (FEM) displacements and stresses with relative errors below 1%. A three-hour load case is solved in 0.69 min for displacements and 3.81 min for stresses on a consumer-grade NVIDIA RTX 4070 Ti GPU—over two orders of magnitude faster than the full FEM model—while one million fatigue stress histories (1000 hotspots × 1000 operating scenarios) are processed in 37 min. This efficiency enables continuous structural monitoring, rapid *what-if* assessments and timely decision-making for targeted inspections and adaptive control. By effectively combining physics-based reduced-order modeling with high-throughput computation, the proposed framework overcomes key barriers to DT deployment: computational overhead, physical fidelity and scalability. Although demonstrated on a steel platform, the approach is readily extensible to composite structures and multi-turbine arrays, providing a robust foundation for cost-effective and reliable deep-water wind-energy operations.
Details
Finite element method;
Offshore;
Wind power;
Reduced order models;
Deep learning;
Internet of Things;
Inspection;
Estimates;
Steel structures;
Adaptive control;
Physics;
Computer applications;
Submersibles;
Semisubmersible platforms;
Submersible platforms;
Stresses;
Structural health monitoring;
Turbines;
Simulation;
Materials fatigue;
Digital twins;
Sensors;
Fluid-structure interaction;
Mathematical models;
Wind turbines;
Composite structures;
Real time;
Floating;
Embedding;
Decision making;
Structural dynamics;
Turbine engines
; Garcia-Espinosa, Julio 1
; Di Capua Daniel 2
; Servan-Camas Borja 3
; Berdugo-Parada Irene 3
1 Departamento de Arquitectura, Construcción y Sistemas Oceánicos y Navales, Escuela Técnica Superior de Ingenieros Navales, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain, Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Gran Capitan s/n, 08034 Barcelona, Spain; [email protected] (D.D.C.); [email protected] (B.S.-C.); [email protected] (I.B.-P.)
2 Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Gran Capitan s/n, 08034 Barcelona, Spain; [email protected] (D.D.C.); [email protected] (B.S.-C.); [email protected] (I.B.-P.), Departamento de Resistencia de Materiales y Estructuras a la Ingeniería (RMEE), Universidad Politécnica de Cataluña (UPC), 08019 Barcelona, Spain
3 Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Gran Capitan s/n, 08034 Barcelona, Spain; [email protected] (D.D.C.); [email protected] (B.S.-C.); [email protected] (I.B.-P.)