Content area
This paper presents the implementation of a real-time nonlinear state observer applied to an erbium-doped fiber laser system. The observer is designed to estimate population inversion, a state variable that cannot be measured directly due to the physical limitations of measurement devices. Taking advantage of the fact that the laser intensity can be measured in real time, an observer was developed to reconstruct the dynamics of population inversion from this measurable variable. To validate and strengthen the estimate obtained by the observer, a Recurrent Wavelet First-Order Neural Network (RWFONN) was implemented and trained to identify both state variables: the laser intensity and the population inversion. This network efficiently captures the system’s nonlinear dynamic properties and complements the observer’s performance. Two metrics were applied to evaluate the accuracy and reliability of the results: the Euclidean distance and the mean square error (MSE), both of which confirm the consistency between the estimated and expected values. The ultimate goal of this research is to develop a neural control architecture that combines the estimation capabilities of state observers with the generalization and modeling power of artificial neural networks. This hybrid approach opens up the possibility of developing more robust and adaptive control systems for highly dynamic, complex laser systems.
Details
Mathematical models;
Measuring instruments;
Artificial neural networks;
Real time;
Erbium;
Approximation;
Adaptive control;
Dynamic characteristics;
Doped fibers;
State observers;
Robust control;
Adaptive systems;
Population inversion;
Lasers;
Neural networks;
State variable;
Variables;
Dynamical systems;
Nonlinear dynamics;
Fiber lasers;
Euclidean geometry
; López-Mancilla Didier 2
; Rider, Jaimes-Reátegui 3
; García-López, Juan Hugo 3
; Huerta-Cuellar, Guillermo 3
; Ontañon-García, Luis Javier 4
1 Optics, Complex Systems and Innovation Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico; [email protected] (D.A.M.-G.); [email protected] (R.J.-R.); [email protected] (G.H.-C.), Preparatoria Regional de Lagos de Moreno, Universidad de Guadalajara, Camino a Santa Emilia 620 No. 976, Col. Cristeros, Lagos de Moreno 47476, Mexico, Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas, San Luis Potosí 78600, Mexico
2 Control Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico; [email protected]
3 Optics, Complex Systems and Innovation Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico; [email protected] (D.A.M.-G.); [email protected] (R.J.-R.); [email protected] (G.H.-C.)
4 Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas, San Luis Potosí 78600, Mexico