Content area

Abstract

This paper presents the implementation of a real-time nonlinear state observer applied to an erbium-doped fiber laser system. The observer is designed to estimate population inversion, a state variable that cannot be measured directly due to the physical limitations of measurement devices. Taking advantage of the fact that the laser intensity can be measured in real time, an observer was developed to reconstruct the dynamics of population inversion from this measurable variable. To validate and strengthen the estimate obtained by the observer, a Recurrent Wavelet First-Order Neural Network (RWFONN) was implemented and trained to identify both state variables: the laser intensity and the population inversion. This network efficiently captures the system’s nonlinear dynamic properties and complements the observer’s performance. Two metrics were applied to evaluate the accuracy and reliability of the results: the Euclidean distance and the mean square error (MSE), both of which confirm the consistency between the estimated and expected values. The ultimate goal of this research is to develop a neural control architecture that combines the estimation capabilities of state observers with the generalization and modeling power of artificial neural networks. This hybrid approach opens up the possibility of developing more robust and adaptive control systems for highly dynamic, complex laser systems.

Details

1009240
Title
Real-Time Observer and Neuronal Identification of an Erbium-Doped Fiber Laser
Author
Magallón-García, Daniel Alejandro 1   VIAFID ORCID Logo  ; López-Mancilla Didier 2   VIAFID ORCID Logo  ; Rider, Jaimes-Reátegui 3   VIAFID ORCID Logo  ; García-López, Juan Hugo 3   VIAFID ORCID Logo  ; Huerta-Cuellar, Guillermo 3   VIAFID ORCID Logo  ; Ontañon-García, Luis Javier 4   VIAFID ORCID Logo 

 Optics, Complex Systems and Innovation Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico; [email protected] (D.A.M.-G.); [email protected] (R.J.-R.); [email protected] (G.H.-C.), Preparatoria Regional de Lagos de Moreno, Universidad de Guadalajara, Camino a Santa Emilia 620 No. 976, Col. Cristeros, Lagos de Moreno 47476, Mexico, Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas, San Luis Potosí 78600, Mexico 
 Control Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico; [email protected] 
 Optics, Complex Systems and Innovation Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico; [email protected] (D.A.M.-G.); [email protected] (R.J.-R.); [email protected] (G.H.-C.) 
 Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas, San Luis Potosí 78600, Mexico 
Publication title
Photonics; Basel
Volume
12
Issue
10
First page
955
Number of pages
17
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-09-26
Milestone dates
2025-08-26 (Received); 2025-09-23 (Accepted)
Publication history
 
 
   First posting date
26 Sep 2025
ProQuest document ID
3265936809
Document URL
https://www.proquest.com/scholarly-journals/real-time-observer-neuronal-identification-erbium/docview/3265936809/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-10-28
Database
ProQuest One Academic