Content area

Abstract

This study aims to enhance the accuracy of human lower limb motion intention recognition based on surface electromyography (sEMG) signals and proposes a signal denoising method based on Sequential Variational Mode Decomposition (SVMD) optimized by the Parrot Optimization (PO) algorithm and a joint motion angle prediction model combining Residual Network (ResNet) with Gated Recurrent Unit (GRU) for the two aspects of signal processing and predictive modeling, respectively. First, for the two motion conditions of level walking and stair climbing, sEMG signals from the rectus femoris, vastus lateralis, semitendinosus, and biceps femoris, as well as the motion angles of the hip and knee joints, were simultaneously collected from five healthy subjects, yielding a total of 400 gait cycle data points. The sEMG signals were denoised using the method combining PO-SVMD with wavelet thresholding. Compared with denoising methods such as Empirical Mode Decomposition, Partial Ensemble Empirical Mode Decomposition, Independent Component Analysis, and wavelet thresholding alone, the signal-to-noise ratio (SNR) of the proposed method was increased to a maximum of 23.42 dB. Then, the gait cycle information was divided into training and testing sets at a 4:1 ratio, and five models—ResNet-GRU, Transformer-LSTM, CNN-GRU, ResNet, and GRU—were trained and tested individually using the processed sEMG signals as input and the hip and knee joint movement angles as output. Finally, the root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) were used as evaluation metrics for the test results. The results show that for both motion conditions, the evaluation metrics of the ResNet-GRU model in the test results are superior to those of the other four models. The optimal evaluation metrics for level walking are 2.512 ± 0.415°, 1.863 ± 0.265°, and 0.979 ± 0.007, respectively, while the optimal evaluation metrics for stair climbing are 2.475 ± 0.442°, 2.012 ± 0.336°, and 0.98 ± 0.009, respectively. The method proposed in this study achieves improvements in both signal processing and predictive modeling, providing a new method for research on lower limb motion intention recognition.

Details

1009240
Title
Study on Lower Limb Motion Intention Recognition Based on PO-SVMD-ResNet-GRU
Author
Li, Wei 1 ; Wang Mingsen 1 ; Sun Daxue 1 ; Jia Zhuoda 1 ; Yue Zhengwei 2 

 Key Laboratory of Intelligent Rehabilitation and Accessibility for People with Disabilities, Ministry of Education of China, Changchun University, Changchun 130022, China; [email protected] (M.W.); [email protected] (D.S.); [email protected] (Z.J.) 
 Shandong Jite Industrial Technology Co., Ltd., Rizhao 262399, China; [email protected] 
Publication title
Processes; Basel
Volume
13
Issue
10
First page
3252
Number of pages
26
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-10-13
Milestone dates
2025-09-15 (Received); 2025-10-11 (Accepted)
Publication history
 
 
   First posting date
13 Oct 2025
ProQuest document ID
3265942980
Document URL
https://www.proquest.com/scholarly-journals/study-on-lower-limb-motion-intention-recognition/docview/3265942980/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-10-31
Database
ProQuest One Academic