Content area

Abstract

You Only Look Once (YOLO) is a convolutional neural network-based object detection algorithm widely used in real-time vision applications. However, its high computational demand leads to significant power consumption and cost when deployed in graphics processing units. Field-programmable gate arrays offer a low-power alternative. However, their efficient implementation requires architecture-level optimization tailored to limited device resources. This study presents an optimized YOLOv2 accelerator for the Zynq-7000 system-on-chip (SoC). The design employs 16-bit integer quantization, a filter reuse structure, an input feature map reuse scheme using a line buffer, and tiling parameter optimization for the convolution and max pooling layers to maximize resource efficiency. In addition, a stall-based control mechanism is introduced to prevent structural hazards in the pipeline. The proposed accelerator was implemented on the Zynq-7000 SoC board, and a system-level evaluation confirmed a negligible accuracy drop of only 0.2% compared with the 32-bit floating-point baseline. Compared with previous YOLO accelerators on the same SoC, the design achieved up to 26% and 15% reductions in flip-flop and digital signal processor usage, respectively. This result demonstrates feasible deployment on XC7Z020 with DSP 57.27% and FF 16.55% utilization.

Details

1009240
Business indexing term
Title
Design and Implementation of a YOLOv2 Accelerator on a Zynq-7000 FPGA
Author
Publication title
Sensors; Basel
Volume
25
Issue
20
First page
6359
Number of pages
24
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-10-14
Milestone dates
2025-08-28 (Received); 2025-10-13 (Accepted)
Publication history
 
 
   First posting date
14 Oct 2025
ProQuest document ID
3265945697
Document URL
https://www.proquest.com/scholarly-journals/design-implementation-yolov2-accelerator-on-zynq/docview/3265945697/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-10-31
Database
ProQuest One Academic