Content area

Abstract

Flood magnitude and frequency estimation are essential for the design of structural and nature-based flood risk management interventions and water resources planning. However, the global geography of hydrological observations is uneven, with many regions, especially in the Global South, having spatially and temporally sparse data that limit the choice of statistical methods for flood estimation. To address this data scarcity, we pool all available annual maximum flood data for the Philippines to estimate flood magnitudes at the national scale. Available river discharge data were collected from publications covering 842 sites, with data spanning from 1908 to 2018. Of these, 466 sites met criteria for reliable estimation of the annual maximum flood. Using the index flood approach, a range of controls was assessed at both national and regional scales using modern land cover and rainfall data sets, as well as geospatial catchment characteristics. Predictive equations for 2 to 100 year recurrence interval floods using only catchment area as a predictor have R20.59. Adding a rainfall variable, the median annual maximum 1 d rainfall, increases R2 to between 0.56 for Q100 and 0.66 for Q2. Very few other topographic or land use variables were significant when added to multiple regression equations. Relatively low R2 values in flood predictions are typical of studies from tropical regions. Although the Philippines exhibits regional climate variability, residuals from national predictive equations show limited spatial structure, and region-specific equations do not significantly outperform the national equations. The predictive equations are suitable for use as design equations in ungauged catchments for the Philippines, but statistical uncertainties must be reported. Our approach demonstrates how combining individually short historical records, after careful screening and exclusion of unreliable data, can generate large data sets that can produce consistent results. Extension of continuous flood records by continuous and rated monitoring is required to reduce uncertainties. However, the national-scale consistency in our results suggests that extrapolation from a small number of carefully selected catchments could provide nationally reliable predictive equations with reduced uncertainties.

Details

1009240
Company / organization
Title
Integrating historical archives and geospatial data to revise flood estimation equations for Philippine rivers
Author
Hoey, Trevor B. 1   VIAFID ORCID Logo  ; Tolentino, Pamela Louise M. 2   VIAFID ORCID Logo  ; Guardian, Esmael 3 ; Perez, John Edward G. 4   VIAFID ORCID Logo  ; Williams, Richard D. 5   VIAFID ORCID Logo  ; Boothroyd, Richard 6   VIAFID ORCID Logo  ; David, Carlos Primo C. 3 ; Paringit, Enrico C. 7 

 Department of Civil and Environmental Engineering, Brunel University London, London, UB8 3PH, United Kingdom 
 School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom; National Institute of Geological Sciences, University of the Philippines, Diliman, the Philippines 
 National Institute of Geological Sciences, University of the Philippines, Diliman, the Philippines 
 National Institute of Geological Sciences, University of the Philippines, Diliman, the Philippines; University of Vienna, Vienna, Austria 
 School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom; Earth Sciences New Zealand, Kirikiriroa / Hamilton, 3216, Aotearoa / New Zealand 
 Department of Geography and Planning, University of Liverpool, Liverpool, L69 7ZT, United Kingdom 
 Department of Geodetic Engineering, University of the Philippines, Diliman, the Philippines; Department of Science and Technology – Philippine Council for Industry, Energy and Emerging Technology Research and Development, Manila, the Philippines 
Publication title
Volume
29
Issue
21
Pages
6181-6200
Number of pages
21
Publication year
2025
Publication date
2025
Publisher
Copernicus GmbH
Place of publication
Katlenburg-Lindau
Country of publication
Germany
ISSN
10275606
e-ISSN
16077938
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-06-28 (Received); 2024-07-08 (Rev-Request); 2025-08-14 (Rev-Recd); 2025-08-15 (Accepted)
ProQuest document ID
3270751617
Document URL
https://www.proquest.com/scholarly-journals/integrating-historical-archives-geospatial-data/docview/3270751617/se-2?accountid=208611
Copyright
© 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-11
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic