Content area

Abstract

As port operations rapidly evolve toward intelligent and heavy-duty applications, fault diagnosis for core equipment demands higher levels of real-time performance and robustness. Deep learning, with its powerful autonomous feature learning capabilities, demonstrates significant potential in mechanical fault prediction and health management. This paper first provides a systematic review of deep learning research advances in rotating machinery fault diagnosis over the past eight years, focusing on the technical approaches and application cases of four representative models: Deep Belief Networks (DBNs), Convolutional Neural Networks (CNNs), Auto-encoders (AEs), and Recurrent Neural Networks (RNNs). These models, respectively, embody four core paradigms, unsupervised feature generation, spatial pattern extraction, data reconstruction learning, and temporal dependency modeling, forming the technological foundation of contemporary intelligent diagnostics. Building upon this foundation, this paper delves into the unique challenges encountered when transferring these methods from generic laboratory components to specialized port equipment such as shore cranes and yard cranes—including complex operating conditions, harsh environments, and system coupling. It further explores future research directions, including cross-condition transfer, multi-source information fusion, and lightweight deployment, aiming to provide theoretical references and implementation pathways for the technological advancement of intelligent operation and maintenance in port equipment.

Details

1009240
Title
A Review of Deep Learning in Rotating Machinery Fault Diagnosis and Its Prospects for Port Applications
Author
Wang, Haifeng 1 ; Wang, Hui 2 ; Tang Xianqiong 2 

 Shanghai Zhenhua Heavy Industries Co., Ltd., Shanghai 200125, China; [email protected] 
 School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China; [email protected] 
Publication title
Volume
15
Issue
21
First page
11303
Number of pages
48
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
Document type
Review
Publication history
 
 
Online publication date
2025-10-22
Milestone dates
2025-09-23 (Received); 2025-10-20 (Accepted)
Publication history
 
 
   First posting date
22 Oct 2025
ProQuest document ID
3271550615
Document URL
https://www.proquest.com/scholarly-journals/review-deep-learning-rotating-machinery-fault/docview/3271550615/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-13
Database
ProQuest One Academic