Content area

Abstract

Determining tumor progression status is critical for early-stage lung adenocarcinoma (esLUAD) diagnosis and treatment, yet histopathology-based grading often overlooks heterogeneity within grades. We propose RadioTrace, a deep contrastive learning framework integrating radiomic and pathological information to learn a radiomic trajectory for quantifying esLUAD progression. Across four multi-institutional cohorts, RadioTrace well predicted tumor phenotypes including spread through air spaces (STAS) and lymph node metastasis (LNM). Survival analyses demonstrated it as an independent prognostic factor (log-rank test p< 0.004 across all cohorts). Within the same pathological grade, it revealed significant survival heterogeneity (p< 0.02 across all cohorts), underscoring the limitations of current grading criteria. Genomic and transcriptomic analyses confirmed associations with progression-related molecular features. Longitudinal analysis of patients with multiple CT follow-ups further showed consistency with continuous progression. These findings demonstrate that RadioTrace enables quantitative, interpretable assessment of esLUAD progression, providing insights beyond histopathology and assisting clinical decision-making.

Full text

Turn on search term navigation

© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.