Content area

Abstract

As building energy consumption and carbon emissions continue to rise, minimizing energy loss through windows—major heat exchange pathways—has become an urgent challenge. To reduce building energy consumption by improving windows’ thermal insulation and light modulation, this study develops a thermoresponsive hydrogel named PDH, based on a poly(N-isopropylacrylamide) backbone, for use as a window coating. The hydrogel exhibits considerable visible light transmittance (97.92%) and high solar modulation ability (81.70%), along with favorable mechanical properties, which enable its stable and direct application onto single-pane glass surface, thereby simplifying the conventional glass–hydrogel–glass structure in smart windows. In practical building applications, PDH hydrogel shows significant thermal regulation, with an average daytime indoor temperature reduction of 6.95 °C and energy savings of 384.04 kJ m−2. Furthermore, a global energy-saving and carbon-reduction model is developed using climate data to support the assessments and applications of PDH hydrogels across various climate regions.

It is challenging to design thermally regulating windows to reduce building energy consumption. Here the authors designed a thermoresponsive hydrogel-based window balancing mechanical, optical, and thermal properties.

Details

1009240
Identifier / keyword
Title
Thermochromic hydrogels for synergistic mechano-optical properties and global energy saving potential
Author
Yang, Bowen 1 ; Zhou, Enpei 1 ; Lv, Wenhao 2 ; Wang, Zhenxi 3 ; Lv, Song 4   VIAFID ORCID Logo 

 School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China (ROR: https://ror.org/03fe7t173) (GRID: grid.162110.5) (ISNI: 0000 0000 9291 3229) 
 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China (ROR: https://ror.org/03fe7t173) (GRID: grid.162110.5) (ISNI: 0000 0000 9291 3229) 
 Sanya Science & Education Innovation Park, Wuhan University of Technology, Sanya, China (ROR: https://ror.org/03fe7t173) (GRID: grid.162110.5) (ISNI: 0000 0000 9291 3229) 
 School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China (ROR: https://ror.org/03fe7t173) (GRID: grid.162110.5) (ISNI: 0000 0000 9291 3229); School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China (ROR: https://ror.org/03fe7t173) (GRID: grid.162110.5) (ISNI: 0000 0000 9291 3229); Sanya Science & Education Innovation Park, Wuhan University of Technology, Sanya, China (ROR: https://ror.org/03fe7t173) (GRID: grid.162110.5) (ISNI: 0000 0000 9291 3229) 
Publication title
Volume
16
Issue
1
Pages
10080
Number of pages
14
Publication year
2025
Publication date
2025
Section
Article
Publisher
Nature Publishing Group
Place of publication
London
Country of publication
United States
Publication subject
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-11-18
Milestone dates
2025-10-07 (Registration); 2025-01-15 (Received); 2025-10-06 (Accepted)
Publication history
 
 
   First posting date
18 Nov 2025
ProQuest document ID
3273108609
Document URL
https://www.proquest.com/scholarly-journals/thermochromic-hydrogels-synergistic-mechano/docview/3273108609/se-2?accountid=208611
Copyright
© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-20
Database
ProQuest One Academic