Content area

Abstract

Purpose

Patlak parametric imaging is widely employed for kinetic modeling due to its simplicity and robustness. The time-to-equilibrium (t*), which must be defined to estimate kinetic parameters, is currently set empirically and uniformly across the entire body. In this study, we evaluate the regional impact of varying t* values on kinetic parameter estimates using a multi-tissue segmentation approach at the whole-body level.

Methods

Data from 53 patients who underwent one-hour dynamic 18 F-FDG PET/CT scans were retrospectively analyzed. Parametric maps of the net influx rate (Ki) and blood distribution volume (dv) were calculated for four t* values (10, 20, 30, and 45 min) using in-house software (PET KinetiX). Voxel-wise Ki and dv values were extracted from 10 predefined tissue structures through automated segmentation. Using t* = 30 min as the widely accepted reference, relative mean errors and relative absolute mean errors of Ki and dv estimated at t*shifts = 10, 20 and 45 min were calculated for each tissue. Pearson correlation coefficients between Ki or dv reference values and those estimated at t* shifts = 10, 20, and 45 min were also computed.

Results

Compared to the reference t*30, Ki estimates ranged from − 21.4% (liver) to 7.3% (SAT) at t*10, and from − 13.8% (lungs) to 2.4% (brain) at t*20. Median absolute bias was 12.8% at t*10 (6.5% brain to > 25% liver) and 8.6% at t*20 (3.2% brain to > 15% lungs and liver). At t*45, Ki was consistently overestimated, with a median bias of 19.4% (2.7% brain to > 33% lungs and liver) and median absolute bias of 19.8% (5.5% brain to > 33% lungs and liver). For dv, biases ranged from − 25.2% (brain) to 8.6% (spleen) at t*10; − 13.7% (brain) to 5.7% (lungs) at t*20; − 15.5% (liver) to 8.8% (brain) at t*45. Median absolute biases were 14.0% at t*10 (9.8% heart to 25.2% brain), 9.4% at t*20 (7.7% heart to 14.1% brain), and 15% at t*45 (12.4% skeletal muscle to 18.5% brain). Regardless of t*, Ki values exhibited strong linear correlations (r > 0.7) across all organs, whereas dv correlations showed greater variability, falling below 0.7 in 80% of organs at t*45.

Conclusion

Kinetic parameter sensitivity to time-to-equilibrium (t*) varies across organs in Patlak whole-body parametric imaging, underscoring the necessity of adopting flexible or adaptive t* values at the whole-body level.

Details

1009240
Company / organization
Title
Regional impact of time-to-equilibrium on indirect Patlak whole-body parametric imaging: a multi-tissue class analysis at the entire body level
Author
Sivapathasundaram, Abarnaa 1 ; Buffon, Agnieszka 1 ; Ghidaglia, Jérôme 1 ; Jentreau, Yannick 1 ; Gomez, Léa 1 ; Jamet, Axelle 1 ; Beau, Maïwenn 1 ; Da Fonseca, Natacha 1 ; Harnais, Kevin 1 ; Onephandara, Stéphane 1 ; Makhlouf, Widad 1 ; En Nourhi, Karim 1 ; Durand, Emmanuel 2 ; Faure, Sylvain 3 ; Besson, Florent L. 2   VIAFID ORCID Logo 

 Hôpital Bicêtre, Department of Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris-Saclay, AP-HP, DMU SMART IMAGING,, Le Kremlin-Bicêtre, France (GRID:grid.413784.d) (ISNI:0000 0001 2181 7253) 
 Hôpital Bicêtre, Department of Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris-Saclay, AP-HP, DMU SMART IMAGING,, Le Kremlin-Bicêtre, France (GRID:grid.413784.d) (ISNI:0000 0001 2181 7253); Université Paris-Saclay, BioMaps, CEA / Inserm / CNRS, Orsay, France (GRID:grid.460789.4) (ISNI:0000 0004 4910 6535); Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (GRID:grid.460789.4) (ISNI:0000 0004 4910 6535) 
 CNRS / Université Paris-Saclay / INRIA ParMa, Laboratoire de Mathématiques d’Orsay, Orsay, France (GRID:grid.463900.8) (ISNI:0000 0004 0368 9704) 
Publication title
EJNMMI Physics; Heidelberg
Volume
12
Issue
1
Pages
96
Publication year
2025
Publication date
Dec 2025
Publisher
Springer Nature B.V.
Place of publication
Heidelberg
Country of publication
Netherlands
e-ISSN
21977364
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-11-20
Milestone dates
2025-10-24 (Registration); 2025-04-30 (Received); 2025-10-23 (Accepted)
Publication history
 
 
   First posting date
20 Nov 2025
ProQuest document ID
3273978266
Document URL
https://www.proquest.com/scholarly-journals/regional-impact-time-equilibrium-on-indirect/docview/3273978266/se-2?accountid=208611
Copyright
© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-22
Database
ProQuest One Academic