Content area

Abstract

In this paper we extend the duality (Ccomp(Rd)¯BMO(Rd))=H1(Rd) to generalized Campanato spaces with variable growth condition Lp,ϕ(Rd) instead of BMO(ℝd). We also extend the characterization of Ccomp(Rd)¯BMO(Rd) by Uchiyama (1978) to Ccomp(Rd)¯Lp,ϕ(Rd). Moreover, using this characterization, we prove the boundedness of singular and fractional integral operators on Ccomp(Rd)¯Lp,ϕ(Rd). The function space Lp,ϕ(Rd) treated in this paper covers the case that it is coincide with Lipα on one area, with BMO on another area and with the Morrey space on the other area, for example.

Details

10000008
Title
Bi-predual Spaces of Generalized Campanato Spaces with Variable Growth Condition
Author
Yamaguchi, Satoshi 1 ; Nakai, Eiichi 1 ; Shimomura, Katsunori 1 

 Ibaraki University, Department of Mathematics, Mito, Ibaraki, Japan (GRID:grid.410773.6) (ISNI:0000 0000 9949 0476) 
Publication title
Volume
41
Issue
1
Pages
273-303
Publication year
2025
Publication date
Jan 2025
Publisher
Springer Nature B.V.
Place of publication
Heidelberg
Country of publication
Netherlands
Publication subject
ISSN
1439-8516
e-ISSN
14397617
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-12-20
Milestone dates
2024-12-20 (Registration); 2023-07-26 (Received); 2023-12-15 (Accepted); 2023-10-15 (Rev-Recd)
Publication history
 
 
   First posting date
20 Dec 2024
ProQuest document ID
3275250922
Document URL
https://www.proquest.com/scholarly-journals/bi-predual-spaces-generalized-campanato-with/docview/3275250922/se-2?accountid=208611
Copyright
© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2024.
Last updated
2025-12-02
Database
ProQuest One Academic