Content area

Abstract

In this paper, we study a backward problem for a fractional Rayleigh–Stokes equation by using a quasi-boundary value method. This problem is ill-posed; i.e., the solution (if it exists) does not depend continuously on the data. To overcome its instability, a regularization method is employed, and convergence rate estimates are derived under both a priori and a posteriori criteria for selecting the regularization parameter. The theoretical results demonstrate the effectiveness of the proposed method in deriving stable and accurate solutions.

Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.