Content area

Abstract

This paper introduces a novel framework that integrates reinforcement learning with declarative modeling and mathematical optimization for dynamic resource allocation during mass casualty incidents. Our approach leverages Mesa as an agent-based modeling library to develop a flexible and scalable simulation environment as a decision support system for emergency response. This paper addresses the challenge of efficiently allocating casualties to hospitals by combining mixed-integer linear and constraint programming while enabling a central decision-making component to adapt allocation strategies based on experience. The two-layer architecture ensures that casualty-to-hospital assignments satisfy geographical and medical constraints while optimizing resource usage. The reinforcement learning component receives feedback through agent-based simulation outcomes, using survival rates as the reward signal to guide future allocation decisions. Our experimental evaluation, using simulated emergency scenarios, shows a significant improvement in survival rates compared to traditional optimization approaches. The results indicate that the hybrid approach successfully combines the robustness of declarative modeling and the adaptability required for smart decision making in complex and dynamic emergency scenarios.

Details

1009240
Business indexing term
Location
Title
ABMS-Driven Reinforcement Learning for Dynamic Resource Allocation in Mass Casualty Incidents †
Publication title
Volume
17
Issue
11
First page
502
Number of pages
15
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
19995903
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-11-03
Milestone dates
2025-08-14 (Received); 2025-10-25 (Accepted)
Publication history
 
 
   First posting date
03 Nov 2025
ProQuest document ID
3275515647
Document URL
https://www.proquest.com/scholarly-journals/abms-driven-reinforcement-learning-dynamic/docview/3275515647/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-26
Database
ProQuest One Academic