Content area
Invasive insects can cause significant economic impacts to agriculture worldwide and impact human health. Traditional pest management methods that include chemical insecticides have raised increasing environmental and health concerns, prompting the need for sustainable alternatives. The Sterile Insect Technique (SIT), which consists of releasing sterile males of a target pest to mate with wild females, is held as a promising solution. However, the success of SIT relies on the release of sterile males. The efficient separation of sexes prior to sterilization and release is necessary. This study presents SIT-ia, a software–hardware system that utilizes artificial intelligence (AI) and computer vision to automate the sex-sorting process. We showcase its use with the fruit fly pest D. suzukii. The system was able to identify males from females with a 98.6% accuracy, sorting 1000 sterile flies in ~70 min, which is nearly half the time involved in manual sorting by experts (i.e., ~112 min). This simple device can easily be adopted in SIT production protocols, improving the feasibility and efficacy of improved pest management practices.
Details
Males;
Invasive species;
Artificial intelligence;
Deep learning;
Hardware;
Invasive insects;
Management methods;
Male sterility;
Females;
Data processing;
Population growth;
Pest control;
Computer vision;
Insects;
Economic impact;
Sterilization;
Insecticides;
Lasers;
Neural networks;
Pests;
Classification;
Effectiveness;
Fruit flies;
Sex;
Algorithms;
Sterilized organisms;
Control methods
; Corley, Juan 6
1 Instituto de Investigaciones Forestales y Agropecuarias de Bariloche, Instituto Nacional de Tecnología Agropecuaria–Consejo Nacional de Investigaciones Científicas y Técnicas (IFAB, INTA–CONICET), San Carlos de Bariloche 8400, Río Negro, Argentina
2 Facultad de Ingeniería, Universidad de Buenos Aires (UBA), Buenos Aires C1063ACV, Argentina
3 Centro Regional Universitario Bariloche, Universidad Nacional del Comahue CRUB (UNCOMA), San Carlos de Bariloche 8400, Río Negro, Argentina
4 Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Centro Regional Patagonia Norte, San Carlos de Bariloche 8400, Río Negro, Argentina
5 Laboratorio de Ecología Química, Facultad de Química, Universidad de la República (UdelaR), Montevideo 11800, Uruguay
6 Instituto de Investigaciones Forestales y Agropecuarias de Bariloche, Instituto Nacional de Tecnología Agropecuaria–Consejo Nacional de Investigaciones Científicas y Técnicas (IFAB, INTA–CONICET), San Carlos de Bariloche 8400, Río Negro, Argentina, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue CRUB (UNCOMA), San Carlos de Bariloche 8400, Río Negro, Argentina