Content area

Abstract

It is crucial to investigate methods for improving the stiffness performance of machine tools according to their specific dynamic working conditions. This paper presents a complete computer-aided workflow for structural transient topology optimization (TO) design, which is applied to the structural design issue of the JH31-250 press machine (Zhejiang Weili Forging Machinery Co., Ltd., Shaoxing, China). The stiffness influenced by the shape of the press frame under long-term dynamic impact load is analyzed, and an optimal design for the frame structure of the press machine is explored. In order to reduce the iteration time of the dynamic analysis, we also proposed a way to simplify the physical structure of the machine tool into a thin-walled structure model with artificial pseudo-density and introduced the hybrid cellular automata (HCA) criterion to obtain the topological iteration direction. This simplified model can be transformed back into 3D solid design of the press. The maximum relative displacement of the worktable in this optimized press model is 0.4896 mm, which is reduced by 31.02% compared to the original press model, which shows that the transient dynamic stiffness of the press machine frame is improved. This work presents a topological optimization method and path, which can be used for the optimization of dynamic stiffness in forging machine tools, and proves the correctness and effectiveness of the design for the transient dynamic stiffness of the frame.

Details

1009240
Title
Application of Hybrid Cellular Automata Method for High-Precision Transient Stiffness Design of a Press Machine Frame
Publication title
Processes; Basel
Volume
13
Issue
11
First page
3726
Number of pages
28
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-11-18
Milestone dates
2025-10-19 (Received); 2025-11-16 (Accepted)
Publication history
 
 
   First posting date
18 Nov 2025
ProQuest document ID
3275549889
Document URL
https://www.proquest.com/scholarly-journals/application-hybrid-cellular-automata-method-high/docview/3275549889/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-26
Database
ProQuest One Academic