Content area

Abstract

For vehicular ad hoc networks (VANET) to achieve intelligent transportation applications, efficient and secure data querying is essential. However, sophisticated multidimensional data processing, easy user privacy leaks, and low computational efficiency in resource-constrained contexts are some of the main issues that data querying in VANET environments encounters. To address these issues, this paper proposes an efficient fine-grained data query system (EFDA) based on lightweight masks that allows vehicle users to safely and in real-time query multidimensional traffic data. First, multifaceted data vectors are effectively integrated into a single cipher processing unit using a multidimensional CRT transformation method that counts the number of valid data. Paillier homomorphic encryption and the lightweight region feature masking technique are used to provide safe aggregation while preserving the privacy of the original data. Second, the ECDSA signature is used to ensure source dependability and data integrity. Lastly, to lower system risk and enhance data quality, an effective malicious node monitoring method based on dichotomous recursion and a reputation incentive mechanism based on user feedback is presented. According to security analysis, the EFDA scheme meets the threat model’s specified security requirements for data confidentiality, integrity, source reliability, and identity privacy. According to the performance simulation evaluation, the EFDA system lowers the computation overhead by 85.7% and 90.1% and the communication overhead by 69.1% and 39.2% when compared to the reference scheme. It achieves the balance between privacy protection and query efficiency and validates its viability and efficiency in the resource-constrained in-vehicle network environment.

Details

1009240
Business indexing term
Title
A multidimensional, efficient, and secure data query based on privacy preservation in vehicular ad hoc networks
Publication title
PLoS One; San Francisco
Volume
20
Issue
11
First page
e0335953
Number of pages
30
Publication year
2025
Publication date
Nov 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2025-06-03 (Received); 2025-10-17 (Accepted); 2025-11-26 (Published)
ProQuest document ID
3276035661
Document URL
https://www.proquest.com/scholarly-journals/multidimensional-efficient-secure-data-query/docview/3276035661/se-2?accountid=208611
Copyright
© 2025 Zhao, Dong. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-27
Database
ProQuest One Academic