Content area

Abstract

This paper presents an analysis of systems described by linear differential equations using the operator method, with electrical circuits as an illustrative example. The key advantage of the operator method lies in its ability to transform a system described by differential equations into a system of algebraic equations. A classification and comparison of various methods for analyzing electrical circuits is provided. The transfer function is defined as the solution to the operator equation of a linear system, and it is demonstrated that this function serves as a generating function enabling both frequency-domain and time-domain analysis. An analytical relationship is established between the transfer function and the frequency/time characteristics of a linear circuit. Using a line with distributed parameters as an example, the paper derives the solution of partial differential equations and illustrates the benefits of the operator method. Lines with distributed parameters are widely used in radio engineering, telecommunications, and in charged particle accelerator physics as pulse signal generators. The frequency and time characteristics of such a line are calculated for arbitrary load and open-circuit conditions using various methods.

Details

1009240
Title
Application of the Operator method for Calculating the Charging Regimes of a Forming Line with Distributed Parameters
Publication title
Volume
3145
Issue
1
First page
012019
Number of pages
9
Publication year
2025
Publication date
Nov 2025
Publisher
IOP Publishing
Place of publication
Bristol
Country of publication
United Kingdom
Publication subject
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
3276546960
Document URL
https://www.proquest.com/scholarly-journals/application-operator-method-calculating-charging/docview/3276546960/se-2?accountid=208611
Copyright
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-29
Database
ProQuest One Academic