REFERENCES
Agnihotri, S., Johnsen, I. A., Bøe, M. S., Øyaas, K., & Moe, S. (2015). Ethanol organosolv pretreatment of softwood (Picea abies) and sugarcane bagasse for biofuel and biorefinery applications. Wood Science and Technology, 49(5), 881-896. https://doi.org/10.1007/S00226-015-0738-4/FIGURES/9
Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Bioethanol production from rice straw: An overview. Bioresource Technology, 101(13), 4767-4774. https://doi.org/10.1016/J.BIORTECH.2009.10.079
Brenelli, L. B., Mandelli, F., Mercadante, A. Z., Rocha, G. J. de M., Rocco, S. A., Craievich, A. F., Gonçalves, A. R., Centeno, D. da C., de Oliveira Neto, M., & Squina, F. M. (2016). Acidification treatment of lignin from sugarcane bagasse results in fractions of reduced polydispersity and high free-radical scavenging capacity. Industrial Crops and Products, 83, 94-103. https://doi.org/10.1016/J.INDCROP.2015.12.013
De, S., Mishra, S., Poonguzhali, E., Rajesh, M., & Tamilarasan, K. (2020). Fractionation and characterization of lignin from waste rice straw: Biomass surface chemical composition analysis. International Journal of Biological Macromolecules, 145, 795-803. https://doi.org/10.1016/J.IJBIOMAC.2019.10.068
de Vasconcelos, S. M., Santos, A. M. P., Rocha, G. J. M., & Souto-Maior, A. M. (2013). Diluted phosphoric acid pretreatment for production of fermentable sugars in a sugarcane-based biorefinery. Bioresource Technology, 135, 46-52. https://doi.org/10.1016/J.BIORTECH.2012.10.083
Diop, A., Awada, H., Zerrouki, R., Daneault, C., & Montplaisir, D. (2014). Tosylation and characterization of lignin in water. Industrial and Engineering Chemistry Research, 53(43), 16771-16776. https://doi.org/10.1021/IE502543P/SUPPL_FILE/IE502543P_SI_001.PDF
Evdokimov, A. N., Kurzin, A. V., Fedorova, O. V., Lukanin, P. V., Kazakov, V. G., & Trifonova, A. D. (2018). Desulfurization of kraft lignin. Wood Science and Technology, 52(4), 1165-1174. https://doi.org/10.1007/S00226-018-1014-1/TABLES/1
Gea, S., Siregar, A. H., Zaidar, E., Harahap, M., Indrawan, D. P., & Perangin-Angin, Y. A. (2020). Isolation and Characterisation of Cellulose Nanofibre and Lignin from Oil Palm Empty Fruit Bunches. Materials 2020, Vol. 13, Page 2290, 13(10), 2290. https://doi.org/10.3390/MA13102290
Goudarzi, A., Lin, L. T., & Ko, F. K. (2014). X-ray diffraction analysis of kraft lignins and lignin-derived carbon nanofibers. Journal of Nanotechnology in Engineering and Medicine, 5(2). https://doi.org/10.1115/1.4028300/374714
Haq, I., Mazumder, P., & Kalamdhad, A. S. (2020). Recent advances in removal of lignin from paper industry wastewater and its industrial applications - A review. Bioresource Technology, 312, 123636. https://doi.org/10.1016/J.BIORTECH.2020.123636
Ibrahim, M. M., Agblevor, F. A., & El-Zawawy, W. K. (2010). Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. BioResources, 5(1), 397-418.
Kim, H. Y., Jeong, H. S., Lee, S. Y., Choi, J. W., & Choi, I. G. (2015). Pd-catalyst assisted organosolv pretreatment to isolate ethanol organosolv lignin retaining compatible characteristics for producing phenolic monomer. Fuel, 153, 40-47. https://doi.org/10.1016/J.FUEL.2015.02.102
Kininge, M. M., & Gogate, P. R. (2022). Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach. Ultrasonics Sonochemistry, 82, 105870. https://doi.org/10.1016/J.ULTSONCH.2021.105870
Kleinert, M., & Barth, T. (2008). Phenols from lignin. Chemical Engineering and Technology, 31(5), 736-745. https://doi.org/10.1002/CEAT.200800073;REQUESTEDJOURNAL:JOURNAL:152141 25;CTYPE:STRING:JOURNAL
Li, M.-F., Fan, Y.-M., Sun, R.-C., & Xu, F. (2010). Characterization of bamboo lignin. BioResources, 5(3), 1762-1778.
Lima Filho, N. M. (1991). Desenvolvimento experimental e modelagem do processo de hidrólise e hidrogenação da biomassa sacarídica [Dissertation]. Universidade Federal do Rio Grande do Norte.
Macfarlane, A. L., Farid, M. M., & Chen, J. J. J. (2009). Kinetics of delignification using a batch reactor with recycle. Chemical Engineering and Processing: Process Intensification, 48(4), 864-870. https://doi.org/10.1016/J.CEP.2008.11.005
Marcelo Fuertez-Córdoba, J., Camilo, J., Ángela, A.-P., & Ruiz-Colorado, A. (2021). Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups *. Revista DYNA, 88(218), 168-177. https://doi.org/10.15446/dyna.v88n218.92055
Maryana, R., Ma'rifatun, D., Wheni, I. A., K.w., S., & Rizal, W. A. (2014). Alkaline Pretreatment on Sugarcane Bagasse for Bioethanol Production. Energy Procedia, 47, 250- 254. https://doi.org/10.1016/J.EGYPRO.2014.01.221
Maziero, P., Neto, M. de O., Machado, D., Batista, T., Cavalheiro, C. C. S., Neumann, M. G., Craievich, A. F., Rocha, G. J. de M., Polikarpov, I., & Gonçalves, A. R. (2012). Structural features of lignin obtained at different alkaline oxidation conditions from sugarcane bagasse. Industrial Crops and Products, 35(1), 61-69. https://doi.org/10.1016/J.INDCROP.2011.06.008
Meighan, B. N., Lima, D. R. S., Cardoso, W. J., Baêta, B. E. L., Adarme, O. F. H., Santucci, B. S., Pimenta, M. T. B., de Aquino, S. F., & Gurgel, L. V. A. (2017). Two-stage fractionation of sugarcane bagasse by autohydrolysis and glycerol organosolv delignification in a lignocellulosic biorefinery concept. Industrial Crops and Products, 108, 431-441. https://doi.org/10.1016/J.INDCROP.2017.06.049
Moubarik, A., Grimi, N., Boussetta, N., & Pizzi, A. (2013). Isolation and characterization of lignin from Moroccan sugar cane bagasse: Production of lignin-phenol-formaldehyde wood adhesive. Industrial Crops and Products, 45, 296-302. https://doi.org/10.1016/J.INDCROP.2012.12.040
Nair, L. G., Agrawal, K., & Verma, P. (2023). Organosolv pretreatment: an in-depth purview of mechanics of the system. Bioresources and Bioprocessing 2023 10:1, 10(1), 1-29. https://doi.org/10.1186/S40643-023-00673-0
Nanda, S., Azargohar, R., Dalai, A. K., & Kozinski, J. A. (2015). An assessment on the sustainability of lignocellulosic biomass for biorefining. Renewable and Sustainable Energy Reviews, 50, 925-941. https://doi.org/10.1016/J.RSER.2015.05.058
Nunes da Silva, V. F., Farias de Menezes, F., Gonçalves, A. R., Martín, C., & de Moraes Rocha, G. J. (2024). Modulating the properties and structure of lignins produced by alkaline delignification of sugarcane bagasse pretreated with two different mineral acids at pilotscale. International Journal of Biological Macromolecules, 263, 130111. https://doi.org/10.1016/J.IJBIOMAC.2024.130111
Pham, T. A., Ngo, D. S., & To, K. A. (2022). Formic Acid-Based Organosolv Delignification of Sugarcane Bagasse for Efficient Enzymatic Saccharification. Sugar Tech, 24(3), 779- 787. https://doi.org/10.1007/S12355-022-01114-6/FIGURES/4
Rashid, T., Gnanasundaram, N., Appusamy, A., Kait, C. F., & Thanabalan, M. (2018). Enhanced lignin extraction from different species of oil palm biomass: Kinetics and optimization of extraction conditions. Industrial Crops and Products, 116, 122-136. https://doi.org/10.1016/J.INDCROP.2018.02.056
Rezende, C. A., De Lima, M., Maziero, P., Deazevedo, E., Garcia, W., & Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 4(1), 1-19. https://doi.org/10.1186/1754-6834-4-54/FIGURES/11
Saha, K., Dasgupta, J., Chakraborty, S., Antunes, F. A. F., Sikder, J., Curcio, S., dos Santos, J. C., Arafat, H. A., & da Silva, S. S. (2017a). Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose, 24(8), 3191-3207. https://doi.org/10.1007/S10570-017-1330-X/FIGURES/8
Saha, K., Dasgupta, J., Chakraborty, S., Antunes, F. A. F., Sikder, J., Curcio, S., dos Santos, J. C., Arafat, H. A., & da Silva, S. S. (2017b). Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose, 24(8), 3191-3207. https://doi.org/10.1007/S10570-017-1330-X/FIGURES/8
Singh, R., Shukla, A., Tiwari, S., & Srivastava, M. (2014a). A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews, 32, 713-728. https://doi.org/10.1016/J.RSER.2014.01.051
Singh, R., Shukla, A., Tiwari, S., & Srivastava, M. (2014b). A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews, 32, 713-728. https://doi.org/10.1016/J.RSER.2014.01.051
Singh, R., Singh, S., Trimukhe, K. D., Pandare, K. V., Bastawade, K. B., Gokhale, D. V., & Varma, A. J. (2005a). Lignin-carbohydrate complexes from sugarcane bagasse: Preparation, purification, and characterization. Carbohydrate Polymers, 62(1), 57-66. https://doi.org/10.1016/J.CARBPOL.2005.07.011
Singh, R., Singh, S., Trimukhe, K. D., Pandare, K. V., Bastawade, K. B., Gokhale, D. V., & Varma, A. J. (2005b). Lignin-carbohydrate complexes from sugarcane bagasse: Preparation, purification, and characterization. Carbohydrate Polymers, 62(1), 57-66. https://doi.org/10.1016/J.CARBPOL.2005.07.011
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP). www.nrel.gov
TAPPI. (2002). Standard T 211 om-02: Ash in wood, pulp, paper, and paperboard: Combustion at 525°C.
Terán Hilares, R., Swerts, M. P., Ahmed, M. A., Ramos, L., Da Silva, S. S., & Santos, J. C. (2017). Organosolv Pretreatment of Sugar Cane Bagasse for Bioethanol Production. Industrial and Engineering Chemistry Research, 56(14), 3833-3838. https://doi.org/10.1021/ACS.IECR.7B00079/ASSET/IMAGES/LARGE/IE-2017- 000799_0002.JPEG
Tian, D., Chen, Y., Shen, F., Luo, M., Huang, M., Hu, J., Zhang, Y., Deng, S., & Zhao, L. (2021). Self-generated peroxyacetic acid in phosphoric acid plus hydrogen peroxide pretreatment mediated lignocellulose deconstruction and delignification. Biotechnology for Biofuels, 14(1), 1-13. https://doi.org/10.1186/S13068-021-02075-W/FIGURES/2
Yáñez-S, M., Matsuhiro, B., Nuñez, C., Pan, S., Hubbell, C. A., Sannigrahi, P., & Ragauskas, A. J. (2014). Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus: Effect of extraction conditions on the molecular structure. Polymer Degradation and Stability, 110, 184-194. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2014.08.026
Zhao, X., & Liu, D. (2013). Kinetic Modeling and Mechanisms of Acid-Catalyzed Delignification of Sugarcane Bagasse by Aqueous Acetic Acid. Bioenergy Research, 6(2), 436-447. https://doi.org/10.1007/S12155-012-9265-4/FIGURES/10
Zhuo, J., Bobokalonov, J., Usmanova, S., & Xiang, Z. (2024). Effects of peracetic acid delignification on hemicellulose extraction by dimethyl sulfoxide. Industrial Crops and Products, 222, 119731. https://doi.org/10.1016/J.INDCROP.2024.119731