Content area

Abstract

Variational Graph Autoencoder (VGAE) is a widely explored model for learning the distribution of graph data. Currently, the approximate posterior distribution in VGAE-based methods is overly restrictive, leading to a significant gap between the variational lower bound and the log-likelihood of graph data. This limitation reduces the expressive power of these VGAE-based models. To address this issue, this paper proposes the Importance Weighted Variational Graph Autoencoder (IWVGAE) and provides a theoretical justification. This method makes the posterior distribution more flexible through Monte Carlo sampling and assigns importance weights to the likelihood gradients during backpropagation. In this way, IWVGAE achieves a more flexible optimization objective, enabling the learning of richer latent representations for graph data. It not only achieves a theoretically tighter variational lower bound but also makes graph density estimation more accurate. Extensive experimental results on seven classic graph datasets show that as the number of samples from the approximate posterior distribution increases, (1) the variational lower bound continuously improves, validating the proposed theory, and (2) the performance on downstream tasks significantly improves, demonstrating more effective learning and representation of graph data.

Details

1009240
Title
Importance weighted variational graph autoencoder
Author
Tao, Yuhao 1 ; Guo, Lin 1 ; Zhao, Shuchang 1   VIAFID ORCID Logo  ; Zhang, Shiqing 1 

 Taizhou University, Institute of Intelligent Information Processing, Taizhou, China (GRID:grid.440657.4) (ISNI:0000 0004 1762 5832) 
Publication title
Volume
12
Issue
1
Pages
31
Publication year
2026
Publication date
Jan 2026
Publisher
Springer Nature B.V.
Place of publication
Heidelberg
Country of publication
Netherlands
ISSN
21994536
e-ISSN
21986053
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-12-02
Milestone dates
2025-10-15 (Registration); 2024-11-13 (Received); 2025-10-09 (Accepted)
Publication history
 
 
   First posting date
02 Dec 2025
ProQuest document ID
3278415588
Document URL
https://www.proquest.com/scholarly-journals/importance-weighted-variational-graph-autoencoder/docview/3278415588/se-2?accountid=208611
Copyright
© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-03
Database
ProQuest One Academic