Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the process of CNC machining, reducing energy consumption, production costs, and improving machining quality are critical strategies for enhancing product competitiveness. Based on an analysis of machine tool processing mechanisms, calculation models for energy consumption, manufacturing cost, and quality (represented by surface roughness) in CNC lathes were established. These models were optimized using the Egret Swarm Optimization Algorithm (ESOA), which integrates three core strategies: waiting, random search, and bounding mechanisms. With the objectives of minimizing energy consumption, manufacturing cost, and maximizing quality, cutting parameters (e.g., cutting speed, feed rate, and depth of cut) were selected as optimization variables. A multi-objective ESOA (MOESOA) framework was applied to resolve trade-offs among conflicting objectives, and the effectiveness of the proposed method was validated through a case study. The simulation results show that the optimization of cutting parameters is beneficial to energy conservation during the machining process, although it may increase costs. Additionally, under the three-objective optimization, the improvement of surface roughness is relatively limited. The further two-objective (energy consumption and cost) optimization model demonstrates better convergence while ensuring that the surface roughness meets the basic requirements. This method provides an effective tool for optimizing cutting parameters.

Details

Title
Research on Energy Saving, Low-Cost and High-Quality Cutting Parameter Optimization Based on Multi-Objective Egret Swarm Algorithm
Author
Zheng Yanfang 1 ; Xiao Yongmao 2 ; Zhu, Xiaoyong 3   VIAFID ORCID Logo 

 School of Safety and Management Engineering, Hunan Institute of Technology, Hengyang 421002, China; [email protected] 
 School of Navigation, Jiujiang Polytechnic University of Science and Technology, Gongqingcheng 332020, China 
 School of Economics and Management, Shaoyang University, Shaoyang 422000, China; [email protected] 
First page
2390
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3244058015
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.