Content area

Abstract

Brain-Computer Interfaces provide promising alternatives for detecting stress and enhancing emotional resilience. This study introduces a lightweight, subject-independent method for detecting stress during arithmetic tasks, designed for low computational cost and real-time use. Stress detection is performed through ElectroEncephaloGraphy (EEG) signal analysis using a simplified processing pipeline. The method begins with preprocessing the EEG recordings to eliminate artifacts and focus on relevant frequency bands (, , and ). Features are extracted by calculating band power and its deviation from a baseline. A statistical thresholding mechanism classifies stress and no-stress epochs without the need for subject-specific calibration. The approach was validated on a publicly available dataset of 36 subjects and achieved an average accuracy of 88.89%. The method effectively identifies stress-related brainwave patterns while maintaining efficiency, making it suitable for embedded and wearable devices. Unlike many existing systems, it does not require subject-specific training, enhancing its applicability in real-world environments.

Full text

Turn on search term navigation

© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.