Content area

Abstract

A Bayes–Prony oscillating modal identification and hierarchical control strategy for low-frequency oscillation (LFO) of a ship microgrid (SM) is presented in this paper. The modal probabilistic estimation of the proposed algorithm replaces point estimation of the traditional Prony method and improves the robustness of modal identification. The hierarchical control strategy first performs modal identification by means of the batch least squares Prony (BLS-Prony) algorithm. The modal identification results are calibrated by the explanatory variance score (EVS), and the control process is transferred to recursive least squares Prony (RLS-Prony) real-time detection. The third layer of decision making transfers to Bayesian Prony (Bayes–Prony) identification in case of a loss of modality or failure of identification. The designed Bayes–Prony algorithm identifies the oscillatory modal of signals with a signal-to-noise ratio (SNR) equal to 2 dB. Compared to BLS-Prony and RLS-Prony, Bayes–Prony reduces the SNR convergence domain of the signal by 30 dB as the last layer of hierarchical control. Therefore, the third-layer decision commands are used as a scheduling reference for damping control in SM power plants. The proposed algorithms and strategies maximize the saving of computational resources while ensuring that the modal identification is effective. Finally, the correctness of the proposed algorithm and strategy is verified by the LFO waveforms of the experimental platform.

Details

1009240
Business indexing term
Company / organization
Title
Bayesian Prony Modal Identification and Hierarchical Control Strategy for Low-Frequency Oscillation of Ship Microgrid
Author
Publication title
Volume
14
Issue
23
First page
4669
Number of pages
23
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-11-27
Milestone dates
2025-11-11 (Received); 2025-11-24 (Accepted)
Publication history
 
 
   First posting date
27 Nov 2025
ProQuest document ID
3280947587
Document URL
https://www.proquest.com/scholarly-journals/bayesian-prony-modal-identification-hierarchical/docview/3280947587/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-10
Database
ProQuest One Academic