Content area

Abstract

What are the main findings?

The integration of the frequency-domain electromagnetic reconstruction algorithm with image-domain cropping optimization achieves an effective balance between reconstruction accuracy and computational efficiency.

The integration of electromagnetic reconstruction and feature alignment effectively enhances model robustness and suppresses background clutter in SAR ATR under varying operating conditions.

What are the implications of the main findings?

Provides a trustworthy deep learning solution for SAR ATR by aligning electromagnetic reconstructions with image features, which helps mitigate overfitting to specific operating conditions.

Provides evidence that utilizing target-related physical features significantly enhances the robustness, generalization and interpretability of deep learning-based SAR ATR.

Deep learning-based synthetic aperture radar (SAR) automatic target recognition (ATR) methods exhibit a tendency to overfit specific operating conditions—such as radar parameters and background clutter—which frequently leads to high sensitivity against variations in these conditions. A novel electromagnetic reconstruction feature alignment (ERFA) method is proposed in this paper, which integrates electromagnetic reconstruction with feature alignment into a fully convolutional network, forming the ERFA-FVGGNet. The ERFA-FVGGNet comprises three modules: electromagnetic reconstruction using our proposed orthogonal matching pursuit with image-domain cropping-optimization (OMP-IC) algorithm for efficient, high-precision attributed scattering center (ASC) reconstruction and extraction; the designed FVGGNet combining transfer learning with a lightweight fully convolutional network to enhance feature extraction and generalization; and feature alignment employing a dual-loss to suppress background clutter while improving robustness and interpretability. Experimental results demonstrate that ERFA-FVGGNet boosts trustworthiness by enhancing robustness, generalization and interpretability.

Details

1009240
Title
Boosting SAR ATR Trustworthiness via ERFA: An Electromagnetic Reconstruction Feature Alignment Method
Author
Gao Yuze 1 ; Li Dongying 1 ; Guo Weiwei 2 ; Lin, Jianyu 1 ; Wang, Yiren 1 ; Yu, Wenxian 1 

 Shanghai Key Laboratory of Intelligent Sensing and Recognition, Shanghai Jiaotong University, Shanghai 200240, China; [email protected] (Y.G.); [email protected] (J.L.); [email protected] (Y.W.); [email protected] (W.Y.) 
 Center for Digital Innovation, Tongji University, Shanghai 200092, China; [email protected] 
Publication title
Volume
17
Issue
23
First page
3855
Number of pages
28
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-11-28
Milestone dates
2025-10-02 (Received); 2025-11-24 (Accepted)
Publication history
 
 
   First posting date
28 Nov 2025
ProQuest document ID
3280962905
Document URL
https://www.proquest.com/scholarly-journals/boosting-sar-atr-trustworthiness-via-erfa/docview/3280962905/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-12
Database
ProQuest One Academic